已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)在函數(shù)f(x)=3x2-2x的圖象上,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項(xiàng)和,求使|Tn-
1
2
|<
1
100
成立的最小正整數(shù)n的值.
分析:(1)首先根據(jù)條件得出Sn=3n2-2n,然后利用an=sn-sn-1求出通項(xiàng)公式.
(2)由(1)得出數(shù)列{bn}的通項(xiàng)公式bn=
3
(6n-5)(6n+1)
=
1
2
(
1
6n-5
-
1
6n+1
)
,然后利用裂項(xiàng)的方法表示出Tn,再解不等式即可.
解答:解:(1)∵點(diǎn)(n,Sn)在函數(shù)f(x)=3x2-2x的圖象上
∴Sn=3n2-2n,
當(dāng)n≥2時(shí),an=sn-sn-1=6n-5
當(dāng)n=1時(shí),也符合上式
∴an=6n-5-----(4分)
(2)bn=
3
(6n-5)(6n+1)
=
1
2
(
1
6n-5
-
1
6n+1
)
,
∴Tn=
1
2
(1-
1
7
+
1
7
-
1
13
+…+
1
6n+1
)=
1
2
(1-
1
6n+1

∴|Tn-
1
2
|=
1
2(6n+1)
1
100

∴n>
49
6

又∵n∈Z
∴n的最小值為9.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式以及數(shù)列求和,此題采取了裂項(xiàng)求和的方法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+n+1,那么它的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項(xiàng)和為Sn=3n+a,若{an}為等比數(shù)列,則實(shí)數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案