已知a,b∈R且a≠0,求證:

答案:
解析:

  證明:(1)若|a|≥|b|,

  左邊=

  ∵,

  ∴

  ∴左邊≥=右邊.

  (2)若|a|<|b|,

  左邊>0,右邊<0,∴原不等式顯然成立.

  綜上可知原不等式成立.

  思路分析:本題中要證明的不等式,包含|a+b|,|a-b|,|a|-|b|,因而需要利用絕對(duì)值的不等式的性質(zhì),其中2|a|=|a+b+a-b|,是一種常用的拼湊法,其次,觀察要證明的不等式,可以發(fā)現(xiàn)不等式的左邊(|a|-|b|),可能為正值(|a|≥|b|時(shí)),也可能非正(|a|<|b|時(shí)).因而,又涉及到分類(lèi)討論.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R且a≠2,定義在區(qū)間(-b,b)內(nèi)的函數(shù)f(x)=lg
1+ax1+2x
是奇函數(shù).
(1)求函數(shù)f(x)的解析式及b的取值范圍;
(2)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(Ⅰ)已知a,b∈R且a>0,b>0,求證:
a2
b
+
b2
a
≥a+b

(Ⅱ)求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R+a+b=
1
2
,求證:
1
a
+
1
b
≥8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省濰坊市壽光現(xiàn)代中學(xué)2012屆高三第一次階段性檢測(cè)數(shù)學(xué)文科試題 題型:013

已知a,b∈R且a>b,則下列不等式中成立的是

[  ]
A.

>1

B.

a2>b2

C.

lg(a-b)>0

D.

()a<()b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,b∈R,且a≠b,在①a2+3ab>2b2;②a5+b5>a3b2+a2b3;③a2+b2≥2(a-b-1);④+>2.這四個(gè)式子中恒成立的是(    )

A①②             B①③             C①②③④         D③

查看答案和解析>>

同步練習(xí)冊(cè)答案