【題目】如圖, 是⊙的直徑,點(diǎn)的中點(diǎn), 平面

)求證

)若點(diǎn)是平面內(nèi)一動(dòng)點(diǎn),且,請(qǐng)?jiān)谄矫?/span>內(nèi),建立適當(dāng)?shù)淖鴺?biāo)系,求出點(diǎn)的軌跡方程,并求出點(diǎn)內(nèi)的軌跡長(zhǎng)度.

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:1)首先由圓的性質(zhì)可得平面易得,由線面垂直判定定理可得,進(jìn)而易得;(2)以點(diǎn)為坐標(biāo)原點(diǎn), 所在直線為軸, 所在直線為軸,建立如圖所示的直角坐標(biāo)系,則, ,將用兩點(diǎn)間距離公式可得的軌跡是圓,可求軸正半軸, 軸正半軸坐標(biāo),進(jìn)而可求,由弧長(zhǎng)公式得結(jié)果.

試題解析:)證明:∵為圓的直徑, 在圓周上,∴,

平面 ,,

,

,得證.

)以點(diǎn)為坐標(biāo)原點(diǎn), 所在直線為軸, 所在直線為軸,

建立如圖所示的直角坐標(biāo)系,則,

設(shè)動(dòng)點(diǎn)的坐標(biāo), ,

,

整理可得: ,的軌跡是以為圓心,半徑為的圓,

可求軸正半軸, 軸正半軸坐標(biāo)為 ,

∴點(diǎn)中軌跡長(zhǎng)度

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1)求的值;

(2)已知在定義域上為減函數(shù),若對(duì)任意的,不等式為常數(shù))恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí), .現(xiàn)已畫(huà)出函數(shù)軸左側(cè)的圖象,如圖所示,并根據(jù)圖象:

(1)直接寫(xiě)出函數(shù) 的增區(qū)間;

(2)寫(xiě)出函數(shù) 的解析式;

(3)若函數(shù) ,求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解籃球愛(ài)好者小李的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小李某月1號(hào)到5號(hào)每天打籃球時(shí)間x單位:小時(shí))與當(dāng)天投籃命中率y之間的關(guān)系:

時(shí)間x

1

2

3

4

5

命中率y

0.4

0.5

0.6

0.6

0.4


(1)求小李這5天的平均投籃命中率;
(2)用線性回歸分析的方法,預(yù)測(cè)小李該月6號(hào)打6小時(shí)籃球的投籃命中率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的最大值;

(2)當(dāng)時(shí),函數(shù)有最小值. 的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}是遞增的等差數(shù)列, 是方程的根.

()的通項(xiàng)公式;

()求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,底面為正方形,四邊形是矩形,平面平面.

(1)求證:平面平面;

(2)若過(guò)直線的一個(gè)平面與線段分別相交于點(diǎn) (點(diǎn)與點(diǎn)均不重合),求證:

(3)判斷線段上是否存在一點(diǎn),使得平面平面?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=2px(p>0)上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(1)求拋物線C的方程;
(2)設(shè)直線y=kx+b與拋物線C交于A(x1 , y1),B(x2 , y2),且|y1﹣y2|=2,過(guò)弦AB中點(diǎn)M作平行于x軸的直線交拋物線于點(diǎn)D,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】12分)已知函數(shù)fx=

1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.

2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案