如圖,△ABC中,∠C=90°,AC=BC=2
2
,一個邊長2的正方形由位置Ⅰ沿AB邊平行移動到位置Ⅱ,若移動的距離為x,正方形和三角形的公共部分的面積為f(x).
(1)求f(x)的解析式;(2)在坐標系中畫出函數(shù)y=f(x)的草圖;
(3)根據(jù)圖象,指出函數(shù)y=f(x)的最大值和單調區(qū)間.
分析:(1)將一個邊長為2的正方形由位置Ⅰ沿AB平行移動到位置Ⅱ停止,若移動的距離為x,此時正方形和△ABC的公共部分分為三種情況,然后分別求出公共部分的面積為f(x);
(2)根據(jù)分段函數(shù)的作圖方法進行作圖;
(3)根據(jù)函數(shù)圖象可得函數(shù)的最大值和函數(shù)的單調區(qū)間.
解答:解:(1)當x∈[0,2]時,正方形和△ABC的公共部分是等腰直角三角形
∴f(x)=
1
2
x2

當x∈(2,4]時,正方形和△ABC的公共部分是兩個直角梯形
f(x)=4-
1
2
(x-2)2-
1
2
(4-x)2

當x∈(4,6]時,正方形和△ABC的公共部分是等腰直角三角形
f(x)=
1
2
[2-(x-4)  2

綜上所述:f(x)=
1
2
x2
4-
1
2
(x-2)2-
1
2
(4-x)2
1
2
[2-(x-4)]2
x∈[0,2]
x∈(2,4]
x∈(4,6]

f(x)=
1
2
x2,(0≤x≤2)
-x2+6x-6,(2<x<4)
1
2
(x-6)2,(4≤x≤6)
;
(2)分段畫出圖象

(3)根據(jù)圖象可知當x=3時,函數(shù)值最大為3;
單調增區(qū)間為[0,3],單調減區(qū)間為[3,6].
點評:本題主要考查了函數(shù)模型的選擇與應用,以及分段函數(shù)的最值及其幾何意義和函數(shù)圖象的作法,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,BC=2
3
,
AB
AC
=4,
AC
CB
=2
,雙曲線M是以B、C為焦點且過A點.
(Ⅰ)建立適當?shù)淖鴺讼,求雙曲線M的方程;
(Ⅱ)設過點E(1,0)的直線l分別與雙曲線M的左、右支交于
F、G兩點,直線l的斜率為k,求k的取值范圍.;
(Ⅲ)對于(Ⅱ)中的直線l,是否存在k≠0使|OF|=|OG|若有求出k的值,若沒有說明理由.(O為原點)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC中,
AN
=
1
3
NC
,若
BP
=n
BN
,
AP
=m
AB
+
2
11
AC
,求實數(shù)m、n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC中,AB=AC,AD是中線,P為AD上一點,CF∥AB,BP延長線交AC、CF于E、F,
求證:PB2=PE•PF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:如圖,△ABC中,∠B=60°,AD,CE是角平分線.
求證:AE+CD=AC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,△ABC中,點D在BC邊上,且AC=2,BC=2.5,AD=1,BD=0.5,則AB的長為
 
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案