19.距某碼頭400公里的正東方向有一個(gè)臺(tái)風(fēng)中心,正以每小時(shí)20公里的速度向西北方向移動(dòng),據(jù)經(jīng)驗(yàn),臺(tái)風(fēng)中心距碼頭300公里時(shí),將對(duì)碼頭產(chǎn)生影響,則這個(gè)臺(tái)風(fēng)對(duì)碼頭產(chǎn)生影響的時(shí)間為( 。
A.8小時(shí)B.9小時(shí)C.10小時(shí)D.12小時(shí)

分析 由已知得AO=OD=400,OA⊥OD,OB=OC=300,∠OAB=45°,由余弦定理求出AB=CD=200$\sqrt{2}-100$,由此能求出這個(gè)臺(tái)風(fēng)對(duì)碼頭產(chǎn)生影響的時(shí)間.

解答 解:如圖,由已知得AO=OD=400,
OA⊥OD,
OB=OC=300,∠OAB=45°,
設(shè)CD=AB=x,
則90000=160000+x2-800x×$\frac{\sqrt{2}}{2}$,
解得AB=CD=200$\sqrt{2}-100$,
∴BC=$\sqrt{160000+160000}$-2(200$\sqrt{2}$-100)
=200,
由題意當(dāng)臺(tái)風(fēng)中心位于BC線段上時(shí),
將對(duì)碼頭O產(chǎn)生影響,
∵臺(tái)風(fēng)中心正以每小時(shí)20公里的速度向西北方向移動(dòng),
∴這個(gè)臺(tái)風(fēng)對(duì)碼頭產(chǎn)生影響的時(shí)間為:$\frac{200}{20}=10$小時(shí).
故選:C.

點(diǎn)評(píng) 本題考查圓的知識(shí)在生產(chǎn)生活中的應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,注意余弦定理和數(shù)形結(jié)合思想的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{e}^{x}}{x-m}$.
(Ⅰ)討論函數(shù)y=f(x)在x∈(m,+∞)上的單調(diào)性;
(Ⅱ)若m∈(0,$\frac{1}{2}$),則當(dāng)x∈[m,m+1]時(shí),函數(shù)y=f(x)的圖象是否總在函數(shù)g(x)=x2+x的圖象上方?請(qǐng)寫出判斷過(guò)程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知圓C:(x+1)2+(y-2)2=2關(guān)于直線2ax+by+6=0對(duì)稱,則點(diǎn)(a,b)與圓心C的距離的最小值為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在三角形ABC中,∠A的平分線為AD,點(diǎn)D在邊BC上,AD=3,AC=4,CD=2,則cosA的值為( 。
A.$\frac{27}{32}$B.$\frac{3}{4}$C.-$\frac{17}{32}$D.$\frac{17}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.如圖所示,A,B兩點(diǎn)5條連線并聯(lián),它們?cè)趩挝粫r(shí)間內(nèi)能通過(guò)的最大信息量依次為2,3,4,3,2.現(xiàn)記從中任取三條線且在單位時(shí)間內(nèi)都通過(guò)的最大信息總量為ξ,則P(ξ≥8)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某賽季甲、乙兩名籃球運(yùn)動(dòng)員每場(chǎng)比賽得分的莖葉圖如圖所示:
(1)分別指出甲乙兩人該賽季比賽得分的中位數(shù);
(2)不計(jì)算,由莖葉圖判斷甲、乙兩人這幾場(chǎng)比賽得分的平均數(shù)和標(biāo)準(zhǔn)差的大小,若從甲乙兩人中選派一人參加更高一級(jí)的比賽,你認(rèn)為選誰(shuí)更合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\sqrt{|x+2|+|6-x|-m}$的定義域?yàn)镽.
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)若實(shí)數(shù)m的最大值為n,正數(shù)a,b滿足$\frac{8}{3a+b}$+$\frac{2}{a+2b}$=n,求2a+$\frac{3}{2}$b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知圓(x-a)2+y2=4與直線x-y+$\sqrt{2}$=0相切,則實(shí)數(shù)a=$\sqrt{2}$或-3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,$\frac{π}{2}$)上是減函數(shù)的是( 。
A.y=x3B.y═-sinxC.y=2x+1D.y=cosx

查看答案和解析>>

同步練習(xí)冊(cè)答案