(本小題滿(mǎn)分12分)

我校高三年級(jí)進(jìn)行了一次水平測(cè)試.用系統(tǒng)抽樣的方法抽取了50名學(xué)生的數(shù)學(xué)成績(jī),準(zhǔn)備進(jìn)行分析和研究.經(jīng)統(tǒng)計(jì)成績(jī)的分組及各組的頻數(shù)如下:

 [40,50), 2;   [50,60), 3;  [60,70), 10;  [70,80), 15;   [80,90), 12;  [90,100], 8.

(Ⅰ)完成樣本的頻率分布表;畫(huà)出頻率分布直方圖.

(Ⅱ)估計(jì)成績(jī)?cè)?5分以下的學(xué)生比例;

(Ⅲ)請(qǐng)你根據(jù)以上信息去估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù).(精確到0.01)

分組

頻數(shù)

頻率

[40,50)

2

 

[50,60)

3

 

[60,70)

10

 

[70,80)

15

 

[80,90)

12

 

[90,100]

8

 

合計(jì)

50

 

(Ⅰ)頻率分布表          (Ⅰ)頻率分布直方圖為

 

 

 

【答案】

 

(Ⅰ)頻率分布表

分組

頻數(shù)

頻率

[40,50)

2

0.04

[50,60)

3

0.06

[60,70)

10

0.2

[70,80)

15

0.3

[80,90)

12

0.24

[90,100]

8

0.16

合計(jì)

50

1

 

 

 

 

 

 

 

 

 

 

 

(Ⅱ)成績(jī)?cè)?5分以下的學(xué)生比例:72%

 (Ⅲ)眾數(shù)為75、中位數(shù)約為76.67、平均數(shù)為76.2

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) (本小題滿(mǎn)分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•自貢三模)(本小題滿(mǎn)分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過(guò)點(diǎn)M作MM1丄y軸于M1,過(guò)N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線(xiàn)C.
(I)求曲線(xiàn)C的方程:
(H)已知直線(xiàn)L與雙曲線(xiàn)C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線(xiàn)段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線(xiàn)L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009湖南卷文)(本小題滿(mǎn)分12分)

為拉動(dòng)經(jīng)濟(jì)增長(zhǎng),某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類(lèi),這三類(lèi)工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類(lèi)別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿(mǎn)分12分)

某民營(yíng)企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查和預(yù)測(cè),A產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤(rùn)與投資單位是萬(wàn)元)

(1)分別將A,B兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù),并寫(xiě)出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬(wàn)元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元.

查看答案和解析>>

同步練習(xí)冊(cè)答案