【題目】在二項(xiàng)式 的展開(kāi)式中,前三項(xiàng)的系數(shù)成等差數(shù)列,把展開(kāi)式中所有的項(xiàng)重新排成一列,則有理項(xiàng)都不相鄰的概率為( )
A.
B.
C.
D.
【答案】D
【解析】解:展開(kāi)式的通項(xiàng)為 ∴展開(kāi)式的前三項(xiàng)系數(shù)分別為
∵前三項(xiàng)的系數(shù)成等差數(shù)列
∴ 解得n=8
所以展開(kāi)式共有9項(xiàng),
所以展開(kāi)式的通項(xiàng)為 =
當(dāng)x的指數(shù)為整數(shù)時(shí),為有理項(xiàng)
所以當(dāng)r=0,4,8時(shí)x的指數(shù)為整數(shù)即第1,5,9項(xiàng)為有理項(xiàng)共有3個(gè)有理項(xiàng)
所以有理項(xiàng)不相鄰的概率P= .
故選D
求出二項(xiàng)展開(kāi)式的通項(xiàng),求出前三項(xiàng)的系數(shù),列出方程求出n;求出展開(kāi)式的項(xiàng)數(shù);令通項(xiàng)中x的指數(shù)為整數(shù),求出展開(kāi)式的有理項(xiàng);利用排列求出將9項(xiàng)排起來(lái)所有的排法;利用插空的方法求出有理項(xiàng)不相鄰的排法;利用古典概型的概率公式求出概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分14分)用這六個(gè)數(shù)字,可以組成多少個(gè)分別符合下
列條件的無(wú)重復(fù)數(shù)字的四位數(shù):(1)奇數(shù);(2)偶數(shù);(3)大于的數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= . (I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若不等式f(x)> 恒成立,求整數(shù)k的最大值;
(III)求證:(1+1×2)(1+2×3)…(1+n(n×1))>e2n﹣3(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知頂點(diǎn)為原點(diǎn)O的拋物線(xiàn)C1的焦點(diǎn)F與橢圓C2: =1(a>b>0)的右焦點(diǎn)重合,C1與C2在第一和第四象限的交點(diǎn)分別為A、B.
(1)若△AOB是邊長(zhǎng)為2 的正三角形,求拋物線(xiàn)C1的方程;
(2)若AF⊥OF,求橢圓C2的離心率e;
(3)點(diǎn)P為橢圓C2上的任一點(diǎn),若直線(xiàn)AP、BP分別與x軸交于點(diǎn)M(m,0)和N(n,0),證明:mn=a2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法不正確的是( )
A. 方程有實(shí)根函數(shù)有零點(diǎn)
B. 有兩個(gè)不同的實(shí)根
C. 函數(shù)在上滿(mǎn)足,則在內(nèi)有零點(diǎn)
D. 單調(diào)函數(shù)若有零點(diǎn),至多有一個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù) 有以下四個(gè)命題:
①對(duì)于任意的,都有; ②函數(shù)是偶函數(shù);
③若為一個(gè)非零有理數(shù),則對(duì)任意恒成立;
④在圖象上存在三個(gè)點(diǎn),,,使得為等邊三角形.其中正確命題的序號(hào)是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為Aa,b,c,且滿(mǎn)足 =
(1)若4sinC=c2sinB,求△ABC的面積;
(2)若 + =4,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}中,a2=4,a4+a7=15. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=2 +n,求b1+b2+b3+…+b10的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】面對(duì)擁堵難題,濟(jì)南治堵不舍晝夜.軌道交通1號(hào)線(xiàn)已于2019年元旦通車(chē)試運(yùn)行,比原定工期提前8個(gè)月,其他各條地鐵線(xiàn)路的建設(shè)也正在如火如荼的進(jìn)行中,完工投入運(yùn)行后將給市民出行帶來(lái)便利.已知某條線(xiàn)路通車(chē)后,地鐵的發(fā)車(chē)時(shí)間間隔為(單位:分鐘),并且.經(jīng)市場(chǎng)調(diào)研測(cè)算,地鐵載客量與發(fā)車(chē)時(shí)間間隔相關(guān),當(dāng)時(shí),地鐵為滿(mǎn)載狀態(tài),載客量為450人;當(dāng)時(shí),載客量會(huì)減少,減少的人數(shù)與的平方成正比,且發(fā)車(chē)時(shí)間間隔為2分鐘時(shí)的載客量為258人,記地鐵載客量為(單位:人).
(1)求的表達(dá)式,并求當(dāng)發(fā)車(chē)時(shí)間間隔為5分鐘時(shí),地鐵的載客量;
(2)若該線(xiàn)路每分鐘的利潤(rùn)為(單位:元),問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔為多少時(shí),該線(xiàn)路每分鐘的利潤(rùn)最大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com