條件,條件,,則條件是條件的(  

A.充分而不必要條件                B.必要而不充分條件   

C.充要條件                          D.既不充分也不必要條件

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于算法:S1輸入n

    S2 判斷n是否等于2,若n=2,則n滿足條件;若n>2,則執(zhí)行S3

    S3  依次從2到n-1檢驗(yàn)?zāi)懿荒苷齨,若不能整除n,則執(zhí)行S4;若能整除n,則執(zhí)行S1

    S4 輸出n

    滿足條件的n是  (  )

    A.質(zhì)數(shù)    B.奇數(shù)

    C.偶數(shù)    D.約數(shù)

      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年上海市普陀區(qū)高三年級第二次質(zhì)量調(diào)研二模理科試卷(解析版) 題型:解答題

設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個不同的點(diǎn)().

(1) 當(dāng)時,試寫出拋物線上的三個定點(diǎn)、、的坐標(biāo),從而使得

;

(2)當(dāng)時,若,

求證:

(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構(gòu)造一個說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補(bǔ)充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實(shí)得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點(diǎn)為,設(shè)

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點(diǎn)為

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;;

解:(1)拋物線的焦點(diǎn)為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,

故可取滿足條件.

(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

;

所以.

(3) ①取時,拋物線的焦點(diǎn)為,

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

,

.

,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)

② 設(shè),分別過

拋物線的準(zhǔn)線的垂線,垂足分別為

及拋物線的定義得

,即.

因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點(diǎn),均為反例.)

③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿足 ”,即:

“當(dāng)時,若,且點(diǎn)的縱坐標(biāo))滿足,則”.此命題為真.事實(shí)上,設(shè),

分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

又由,所以,故命題為真.

補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱”,即:

“當(dāng)時,若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:同步題 題型:單選題

有如下算法:第一步,輸入不小于2的正整數(shù)n
第二步,判斷n是否為2,若n=2,則n滿足條件;若n>2,則執(zhí)行第三步
第三步,依次從2到n-1檢驗(yàn)?zāi)懿荒苷齨,若不能整除,則n滿足條件。
則上述算法滿足條件的n是
[     ]
A.質(zhì)數(shù)
B.奇數(shù)
C.偶數(shù)
D.約數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知條件p: 0  條件q: ,則 的(    )

A.充要條件                               B.充分而不必要的條件

C.必要而不充分的條件              D.既不充分也不必要的條件

查看答案和解析>>

同步練習(xí)冊答案