已知函數(shù)f(x)=cosxsinx(x∈R),給出下列四個命題:其中真命題是
 

①若f(x1)=-f(x2),則x1=-x2;
②f(x)的最小正周期是2π;
③在區(qū)間[-
π
4
,
π
4
]上是增函數(shù);
④f(x)的圖象關于直線x=
4
對稱.
分析:化簡函數(shù)f(x)=cosxsinx為:f(x)=
1
2
sin2x,利用奇函數(shù)判斷①的正誤;函數(shù)的周期判斷②的正誤;利用單調(diào)性判斷③,對稱性判斷④的正誤即可.
解答:解:函數(shù)f(x)=cosxsinx=
1
2
sin2x,
因為它是奇函數(shù),又是周期函數(shù),所以①不正確;
函數(shù)的周期是π,所以②不正確;
③在區(qū)間[-
π
4
,
π
4
]上是增函數(shù);正確;
④f(x)的圖象關于直線x=
4
對稱.當x=
4
時f(x)取得最小值,是對稱軸,所以正確.
故答案為:③④
點評:本題是基礎題,考查三角函數(shù)式的化簡,基本函數(shù)的性質(zhì),掌握基本函數(shù)的性質(zhì)是本題解答的根據(jù),強化基本知識的學習,才能提高數(shù)學知識的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
|x+
1
x
|,x≠0
0     x=0
,則關于x的方程f2(x)+bf(x)+c=0有5個不同實數(shù)解的充要條件是( 。
A、b<-2且c>0
B、b>-2且c<0
C、b<-2且c=0
D、b≥-2且c=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x-
1
2
,x∈R.
(1)求函數(shù)f(x)的最小值和最小正周期;
(2)已知△ABC內(nèi)角A、B、C的對邊分別為a、b、c,滿足sinB-2sinA=0且c=3,f(C)=0,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
1
4
x+
3
4x
-1,g(x)=x2-2bx+4,若對任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),則實數(shù)b的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的圖象如圖所示,則函數(shù)的值域為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足f(0)≥2,f(1)≥2,方程f(x)=0在區(qū)間(0,1)上有兩個實數(shù)根,則實數(shù)a的取值范圍為
(4,+∞)
(4,+∞)

查看答案和解析>>

同步練習冊答案