設(shè)函數(shù)f(x)=(x2+ax+a)•e-x,其中x∈R,a是實數(shù)常數(shù),e是自然對數(shù)的底數(shù).
(Ⅰ)當a=2時,求f(x)在(-1,f(-1))處的切線方程;
(Ⅱ)是否存在實數(shù)a,使得f(x)的極大值為2,若存在,求出a的值,若不存在,說明理由.

解:(Ⅰ)當a=2時,f(x)=(x2+2x+2)e-x;f′(x)=-x2e-x
當x=-1時,f′(-1)=-e,f(-1)=e
∴f(x)在(-1,f(-1))處的切線方程為y=-ex;
(Ⅱ)f′(x)=(2x+a)e-x-e-x(x2+ax+a)=e-x[-x2+(2-a)x]
令f′(x)=0,得x=0或x=2-a,
分三種情況討論:
①、a>2時,2-a<0,
分析可得,x=0時,f(x)取得極大值,
有f(x)極大=(0)=a•e-0=2,解可得a=2,
又由a>2,此時無解;
②、a=2時,2-a=0,f′(x)≤0,
f(x)不存在極大值,不合題意;
③、a<2時,2-a>0,

由表可知f(x)極大=f(2-a)=(4-a)ea-2=2,
又由a<2,也無解;
故不存在實數(shù)a,使得f(x)的極大值為2.
分析:(Ⅰ)把a=2代入,對函數(shù)求導(dǎo),求得切線斜率及切點的坐標,從而可求切線方程;
(Ⅱ)先求導(dǎo)函數(shù),研究函數(shù)的單調(diào)區(qū)間,由單調(diào)區(qū)間求出函數(shù)的極大值,結(jié)合條件進行判斷即可.
點評:本題以函數(shù)為載體,考查導(dǎo)數(shù)的運用,考查由函數(shù)的導(dǎo)數(shù)的符號變化研究函數(shù)的單調(diào)區(qū)間與極值,對于存在性問題常是先假設(shè)存在,再由假設(shè)推導(dǎo),看是否產(chǎn)生矛盾.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調(diào)研數(shù)學(xué)試卷(一)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

設(shè)函數(shù)f(x)=x(x-1)2,x>0.
(1)求f(x)的極值;
(2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
(3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

查看答案和解析>>

同步練習(xí)冊答案