已知圓方程:x2+y2﹣2ax+2y+a+1=0,求圓心到直線(xiàn)ax+y﹣a2=0的距離的取值范圍.
解:將圓方程配方得(x﹣a)2+(y+1)2=a2﹣a
故滿(mǎn)足 a2﹣a>0,解得a>1或a<0
由方程得圓心(a,﹣1)到直線(xiàn)ax+y-a2=0的距離
當(dāng)a>1時(shí),,得
當(dāng)a<0,>1,0<d<1.
所以圓心到直線(xiàn)ax+y﹣a2=0的距離的取值范圍為:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓方程:x2+y2-2ax+2y+a+1=0,求圓心到直線(xiàn)ax+y-a2=0的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+(y-
1
4
)2=
1
16
,動(dòng)圓M與圓C外切,圓心M在x軸上方且圓M與x軸相切.
(I)求圓心軌跡M的曲線(xiàn)方程;
(II)若A(0,-2)為y軸上一定點(diǎn),Q(t,0)為x軸上一動(dòng)點(diǎn),過(guò)點(diǎn)Q且與AQ垂直的直線(xiàn)與軌跡M交于D,B兩點(diǎn)(D在線(xiàn)段BQ上),直線(xiàn)AB與軌跡M交于E點(diǎn),求
AD
AE
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)y=-2上有一個(gè)動(dòng)點(diǎn)Q,過(guò)Q作直線(xiàn)l垂直于x軸,動(dòng)點(diǎn)P在直線(xiàn)l上,且,記點(diǎn)P的軌跡為C1.

(1)求曲線(xiàn)C1的方程.

(2)設(shè)直線(xiàn)l與x軸交于點(diǎn)A,且=(≠0).試判斷直線(xiàn)PB與曲線(xiàn)C1的位置關(guān)系,并證明你的結(jié)論.

(3)已知圓C2:x2+(y-a)2=2,若C1、C2在交點(diǎn)處的切線(xiàn)互相垂直,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年河南省許昌高一下學(xué)期第四次五校聯(lián)考數(shù)學(xué)試卷 題型:解答題

((本小題滿(mǎn)分12分)

 已知圓Cx2+(y-1)2 =5,直線(xiàn)lmx-y+l-m=0,

 (1)求證:對(duì)任意,直線(xiàn)l與圓C總有兩個(gè)不同的交點(diǎn)。

 (2)設(shè)l與圓C交于A、B兩點(diǎn),若| AB | = ,求l的傾斜角;

 (3)求弦AB的中點(diǎn)M的軌跡方程;


 

查看答案和解析>>

同步練習(xí)冊(cè)答案