精英家教網 > 高中數學 > 題目詳情
已知a>0,b>0,a+b=1.求證:
(1)
1
a
+
1
b
+
1
ab
≥8
;              
(2)
a+
1
2
+
b+
1
2
≤2
分析:(1)因為1=a+b≥2
ab
,所以ab≤
1
4
,從而可得結論;
(2)先證明
(a+
1
2
)(b+
1
2
)
≤1,再證明(
a+
1
2
+
b+
1
2
2≤4,即可得到結論.
解答:證明:(1)因為1=a+b≥2
ab
,所以ab≤
1
4
,所以
1
a
+
1
b
+
1
ab
=
2
ab
≥8

所以
1
a
+
1
b
+
1
ab
≥8
;
(2)因為1=a+b≥2
ab
,所以ab≤
1
4
,所以
1
2
(a+b)+ab+
1
4
≤1,
所以
(a+
1
2
)(b+
1
2
)
≤1,從而有2+2
(a+
1
2
)(b+
1
2
)
≤4,
即:(a+
1
2
)+(b+
1
2
)+2
(a+
1
2
)(b+
1
2
)
≤4,即:(
a+
1
2
+
b+
1
2
2≤4,所以原不等式成立.
點評:本題考查不等式的證明,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a>0,b>0,且ab=1,α=a+
4
a
,β=b+
4
b
,則α+β的最小值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)在平面直角坐標系xOy中,判斷曲線C:
x=2cosθ
y=sinθ
(θ為參數)與直線l:
x=1+2t
y=1-t
(t為參數)是否有公共點,并證明你的結論.
(2)已知a>0,b>0,a+b=1,求證:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•松江區(qū)二模)已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a>0,b>0,a+b=1,則a+
1
a
+b+
1
b
的最小值為
5
5

查看答案和解析>>

科目:高中數學 來源:松江區(qū)二模 題型:解答題

已知雙曲線C的中心在原點,D(1,0)是它的一個頂點,
d
=(1,
2
)
是它的一條漸近線的一個方向向量.
(1)求雙曲線C的方程;
(2)若過點(-3,0)任意作一條直線與雙曲線C交于A,B兩點 (A,B都不同于點D),求證:
DA
DB
為定值;
(3)對于雙曲線Γ:
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
,E為它的右頂點,M,N為雙曲線Γ上的兩點(都不同于點E),且EM⊥EN,那么直線MN是否過定點?若是,請求出此定點的坐標;若不是,說明理由.然后在以下三個情形中選擇一個,寫出類似結論(不要求書寫求解或證明過程).
情形一:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0,a≠b)
及它的左頂點;
情形二:拋物線y2=2px(p>0)及它的頂點;
情形三:橢圓
x2
a2
+
y2
b2
=1(a>b>0)
及它的頂點.

查看答案和解析>>

同步練習冊答案