圓C的圓心在y軸上,且與兩直線l1:;l2:均相切.
(I)求圓C的方程;
(II)過拋物線上一點(diǎn)M,作圓C的一條切線ME,切點(diǎn)為E,且的最小值為4,求此拋物線準(zhǔn)線的方程.
(1)(2)
解析試題分析:解(I):由題意,可求得圓C的圓心坐標(biāo)為C(0,5),半徑,所以圓C的方程是 。
(II)如圖,過拋物線上M點(diǎn)的圓的切線為ME,E為切點(diǎn),C為圓心,
則,由圓的切線性質(zhì)知,在Rt中,,所以,而設(shè)M(x,y),因為點(diǎn)M在拋物線上,所以,當(dāng)時,,由此解得(不合題意,舍去),,故拋物線方程為,即,故所求拋物線的準(zhǔn)線方程為:
考點(diǎn):圓的方程,拋物線的方程
點(diǎn)評:解決的關(guān)鍵是利用直線與圓的位置關(guān)系,依據(jù)拋物線的定義來得到結(jié)論,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
在極坐標(biāo)系中,已知圓經(jīng)過點(diǎn),圓心為直線與極軸的交點(diǎn),求圓的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直線與橢圓交于,兩點(diǎn),已知
,,若且橢圓的離心率,又橢圓經(jīng)過點(diǎn),
為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(diǎn)(為半焦距),求直線的斜率的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線的焦點(diǎn)在拋物線上,點(diǎn)是拋物線上的動點(diǎn).
(Ⅰ)求拋物線的方程及其準(zhǔn)線方程;
(Ⅱ)過點(diǎn)作拋物線的兩條切線,、分別為兩個切點(diǎn),設(shè)點(diǎn)到直線的距離為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,短軸的一個端點(diǎn)與左右焦點(diǎn)、組成一個正三角形,焦點(diǎn)到橢圓上的點(diǎn)的最短距離為.
(1)求橢圓的方程;
(2)過點(diǎn)作直線與橢圓交于、兩點(diǎn),線段的中點(diǎn)為,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為.
(1)求橢圓方程;
(2)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè),分別是橢圓E:+=1(0﹤b﹤1)的左、右焦點(diǎn),過的直線與E相交于A、B兩點(diǎn),且,,成等差數(shù)列。
(Ⅰ)求;
(Ⅱ)若直線的斜率為1,求b的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),且它的離心率.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿足,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的右焦點(diǎn),且,設(shè)短軸的一個端點(diǎn)為,原點(diǎn)到直線的距離為,過原點(diǎn)和軸不重合的直線與橢圓相交于兩點(diǎn),且.
(1)求橢圓的方程;
(2)是否存在過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),且使得成立?若存在,試求出直線的方程;若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com