15.已知函數(shù)f(x)=exsinx,則f′($\frac{π}{2}$)=${e}^{\frac{π}{2}}$.

分析 先求導(dǎo),再代值計(jì)算即可.

解答 解:f′(x)=exsinx+excosx,
∴f′($\frac{π}{2}$)=${e}^{\frac{π}{2}}$sin$\frac{π}{2}$+${e}^{\frac{π}{2}}$cos$\frac{π}{2}$=${e}^{\frac{π}{2}}$,
故答案為:${e}^{\frac{π}{2}}$.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則和導(dǎo)數(shù)值的求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{2}^{x}-2,x≥0}\end{array}\right.$,則f(f(-2))=14,函數(shù)f(x)的零點(diǎn)的個(gè)數(shù)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)分別是AB,BC的中點(diǎn),則EF與平面A1DC1的位置關(guān)系為平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.將函數(shù)y=sin($\frac{π}{3}$-x)圖象可經(jīng)過(guò)下列怎樣變化得到函數(shù)y=cos(x-$\frac{π}{6}$)的圖象(  )
A.向左平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{6}$個(gè)單位
C.向左平移$\frac{π}{3}$個(gè)單位D.向右平移$\frac{π}{3}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)y=sin($\frac{π}{4}$x+φ)(φ>0)的部分圖象如圖所示,設(shè)P是圖象的最高點(diǎn),A,B是圖象與x軸的交點(diǎn),則tan∠APB=-$\frac{8}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在三棱錐D-ABC,AB=BC=CD=DA=8,∠ADC=∠ABC=120°,M、O分別為棱BC,AC的中點(diǎn),DM=4$\sqrt{2}$.
(1)求證:平面ABC⊥平面MDO;
(2)求點(diǎn)M到平面ABD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.將編號(hào)為1,2,3,4,5,6的6張卡片,放入四個(gè)不同的盒子中,每個(gè)盒子至少放入一張卡片,則編號(hào)為3與6的卡片不在同一個(gè)盒子中的不同放法共有( 。┓N.
A.960B.1240C.1320D.1440

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.過(guò)雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點(diǎn)的直線l與圓x2+y2=a2相切,且l與雙曲線的右支有公共點(diǎn),則該雙曲線的離心率的取值范圍是($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.計(jì)算cos20°sin50°sin170°=$\frac{1}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案