在長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,AD=2,CC1=1,一條繩子從點(diǎn)A沿表面拉到點(diǎn)C1,求繩子的最短的長(zhǎng).
①沿平面AA1B1B、平面A1B1C1D1鋪展成平面,此時(shí)AC1=.?

②沿平面AA1D1D、平面A1D1C1B1鋪展成平面,此時(shí)AC1=.?

③沿平面AA1B1B、平面BB1C1C鋪展成平面,此時(shí)AC1=.?

故繩子的最短的長(zhǎng)為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體ABCD-A1B1C1D1中,P、Q、R分別為AB、AD、B1C1的中點(diǎn),那么,正方體過P、Q、R的截面圖形是(    )
A.三角形              B.四邊形              C.五邊形              D.六邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若m,n表示直線,α表示平面,給出下列命題:
m∥n;③m⊥n;④n⊥α.
其中正確命題的個(gè)數(shù)為(    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知直三棱柱ABC—A1B1C1中,△ABC為等腰直角三角形,
∠BAC=90°,且AB=AA1,D、E、F分別為B1A、C1C、BC的中點(diǎn).
求證:
(1)DE∥平面ABC;
(2)B1F⊥平面AEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

棱長(zhǎng)為2的正四面體的四個(gè)頂點(diǎn)都在同一個(gè)球面上,若過該球球心的一個(gè)截面如圖所示, 

求圖中三角形(正四面體的截面)的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在四面體PABC中,已知PA=PB=PC=AB=AC=,BC=,則P-ABC的體積V的取值范圍是_____________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

邊長(zhǎng)為5的正方形EFGH是圓柱的軸截面,求從點(diǎn)E沿圓柱的側(cè)面到相對(duì)頂點(diǎn)G的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題中:
①用一個(gè)平行于棱錐底面的平面去截棱錐,底面和截面之間的部分叫棱臺(tái);②棱臺(tái)的各側(cè)棱延長(zhǎng)后一定相交于一點(diǎn);③圓臺(tái)可以看做直角梯形以其垂直于底邊的腰所在直線為旋轉(zhuǎn)軸,其余三邊旋轉(zhuǎn)形成的曲面圍成的幾何體;④半圓繞其直徑所在直線旋轉(zhuǎn)一周形成球.
正確命題的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直三棱柱ABCA1B1C1,底面△ABC中,CA=CB=1,∠BCA=90°,AA1=2,M、N分別是A1B1、A1A的中點(diǎn).

(1)求的長(zhǎng);
(2)求cos<>的值;
(3)求證: A1BC1M.

查看答案和解析>>

同步練習(xí)冊(cè)答案