在△ABC中,角A、B、C的對邊分別為a,b,c,且滿足(2a-c)cosB=bcosC
(1)求角B的大。
(2)若b=
7
,a+c=4
,求△ABC的面積S.
分析:(1)在△ABC中,由(2a-c)cosB=bcosC以及正弦定理可得2sinAcosB=sin(B+C)=sinA,求得cosB的值,
可得 B的值.(2)由條件利用余弦定理可得 cosB=
a2+c2-b2
2ac
=
1
2
,可得ac=3,從而求得△ABC的面積S=
1
2
ac•sinB 的值.
解答:解:(1)在△ABC中,由(2a-c)cosB=bcosC以及正弦定理可得
2sinAcosB-sinCcosB=sinBcosC,即 2sinAcosB=sin(B+C)=sinA,
求得cosB=
1
2
,可得 B=
π
3

(2)若b=
7
,a+c=4
,由余弦定理可得 cosB=
a2+c2-b2
2ac
=
(a+c)2-7
2ac
=
16-7
2ac
=
1
2

故有ac=3,
故△ABC的面積S=
1
2
ac•sinB=
1
2
×3×sin
π
3
=
3
3
4
點評:本題主要考查正弦定理和余弦定理的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大。
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案