14.若log2(3a+4b)=log2a+log2b,則a+b的最小值是7+4$\sqrt{3}$.

分析 利用已知條件求出得到$\frac{4}{a}$+$\frac{3}$=1,然后根據(jù)基本不等式即可求解表達(dá)式的最小值.

解答 解:∵log2(3a+4b)=log2a+log2b=log2ab,
∴a>0,b>0,3a+4b=ab,
∴$\frac{4}{a}$+$\frac{3}$=1,
∴a+b=(a+b)($\frac{4}{a}$+$\frac{3}$)=4+3+$\frac{3a}$+$\frac{4b}{a}$≥7+4$\sqrt{3}$,當(dāng)且僅當(dāng)a=4+2$\sqrt{3}$,b=2$\sqrt{3}$+3時(shí)取等號(hào),
故答案為:$7+4\sqrt{3}$

點(diǎn)評(píng) 本題考查基本不等式的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=9,S6=60.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)若數(shù)列{bn}滿足bn+1-bn=an(n∈N+)且b1=3,求數(shù)列$\left\{{\frac{1}{b_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若F1、F2為雙曲線C:$\frac{{x}^{2}}{4}$-y2=1的左、右焦點(diǎn),點(diǎn)P在雙曲線C上,∠F1PF2=60°,則P到x軸的距離為$\frac{\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.從雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線,切點(diǎn)為T,延長FT交雙曲線右支于P點(diǎn),若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|等于(  )
A.c-aB.b-aC.a-bD.c-b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.為了得到函數(shù)$y=cos(2x+\frac{π}{4})$的圖象,只需把函數(shù)y=sin2x的圖象上所有的點(diǎn)( 。
A.向左平行移動(dòng)$\frac{π}{4}$個(gè)單位長度B.向左平行移動(dòng)$\frac{3π}{4}$個(gè)單位長度
C.向左平行移動(dòng)$\frac{π}{8}$個(gè)單位長度D.向左平行移動(dòng)$\frac{3π}{8}$個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,橢圓上的一點(diǎn)到兩焦點(diǎn)的距離和為6,焦距為$2\sqrt{5}$,求橢圓的參數(shù)方程$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某城市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200.220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖示.
(Ⅰ)求直方圖中x的值;
(Ⅱ)求月平均用電量的眾數(shù)和中位數(shù);
(Ⅲ)在月平均用電量為[220,240),[240,260),[260,280)的三組用戶中,用分層抽樣的方法抽取10戶居民,則月平均用電量在[220,240)的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$.
(1)寫出C1的普通方程和C2的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在C1上,點(diǎn)Q在C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓心為(0,1),半徑為R的圓M與直線x+my-2m-1=0(x∈R)相切,當(dāng)半徑R最大時(shí),圓M的標(biāo)準(zhǔn)方程為x2+(y-1)2=2.

查看答案和解析>>

同步練習(xí)冊答案