橢圓
x2
5
+
y2
m2
=1
的長軸長為6,則橢圓的焦點為(  )
A、(0,±2)
B、(±2,0)
C、(±
14
,0)
D、(0,±
14
分析:依題意,可知橢圓的焦點在y軸,且b2=5,c2=4,從而可求橢圓的焦點坐標.
解答:解:∵橢圓
x2
5
+
y2
m2
=1的長軸長為6,故a=3,
∴a2=m2=9,
∴橢圓的焦點在y軸,
又b2=5,
∴c2=m2-b2=4,
∴橢圓的焦點為(0,±2),
故選:A.
點評:本題考查橢圓的簡單性質(zhì),確定橢圓的焦點位置是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列五個命題,其中真命題的序號是
 
(寫出所有真命題的序號).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),當(dāng)m<-2時C表示橢圓.
(2)在橢圓
x2
45
+
y2
20
=1上有一點P,F(xiàn)1、F2是橢圓的左,右焦點,△F1PF2為直角三角形則這樣的點P有8個.
(3)曲線
x2
10-m
+
y2
6-m
=1(m<6)
與曲線
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)漸近線方程為y=±
b
a
x(a>0,b>0)
的雙曲線的標準方程一定是
x2
a2
-
y2
b2
=1

(5)拋物線y=ax2的焦點坐標為(0,
1
4a
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列五個命題,其中真命題的序號是______(寫出所有真命題的序號).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),當(dāng)m<-2時C表示橢圓.
(2)在橢圓
x2
45
+
y2
20
=1上有一點P,F(xiàn)1、F2是橢圓的左,右焦點,△F1PF2為直角三角形則這樣的點P有8個.
(3)曲線
x2
10-m
+
y2
6-m
=1(m<6)
與曲線
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)漸近線方程為y=±
b
a
x(a>0,b>0)
的雙曲線的標準方程一定是
x2
a2
-
y2
b2
=1

(5)拋物線y=ax2的焦點坐標為(0,
1
4a
)

查看答案和解析>>

同步練習(xí)冊答案