已知一圓錐軸截面的頂角為120°,過頂點(diǎn)的截面三角形的最大面積為2,則圓錐的母線長(zhǎng)為
 
考點(diǎn):旋轉(zhuǎn)體(圓柱、圓錐、圓臺(tái))
專題:空間位置關(guān)系與距離
分析:作出過圓錐頂點(diǎn)的截面,兩條母線的夾角是90°時(shí),截面三角形的最大面積,然后求出母線長(zhǎng).
解答: 解:如圖,過圓錐頂點(diǎn)P認(rèn)作一截面PAB,交底面圓與AB,
∵圓錐軸截面的頂角為120°,則∠APB=90°,
∴過圓錐頂點(diǎn)的截面中,最大截面面積為2.
1
2
l2=2
,∴l(xiāng)=2.
圓錐的母線長(zhǎng)為:2.
故答案為:2.
點(diǎn)評(píng):本題考查了圓錐的結(jié)構(gòu)特征,學(xué)生解答此題時(shí)容易出錯(cuò),往往不假思索的認(rèn)為截面積最大的是軸截面,該題是否是軸截面面積最大取決于軸截面的頂角,此題是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1的兩個(gè)焦點(diǎn),若橢圓上有一定點(diǎn)P,使PF1⊥PF2,試確定
b
a
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-4x-12>0},B={x||x-3|<a},且-3∈B,則A∪B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
1+x2
=a0+a1x+a2x2+a3x3+…+anxn+…,則a3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過點(diǎn)(2,-3)且與橢圓9x2+y2=36共焦點(diǎn)的橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(
π
2
+α)=-
3
5
,且α是第二象限角,則sin(α-
2
)的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是甲,乙兩名同學(xué)5次綜合測(cè)評(píng)成績(jī)的莖葉圖,則乙的成績(jī)的中位數(shù)是
 
,甲乙兩人中成績(jī)較為穩(wěn)定的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x2+2mx+m+6與x軸的兩個(gè)交點(diǎn)A、B位于原點(diǎn)的同側(cè),求實(shí)數(shù)m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下判斷正確的是( 。
A、函數(shù)y=f(x)為R上的可導(dǎo)函數(shù),則“f′(x0)=0”是“x0為函數(shù)f(x)極值點(diǎn)”的充要條件
B、“a=1”是“直線ax+y-1=0與直線x+ay+1=0平行”的充要條件
C、命題“在△ABC中,若A>B,則sinA>sinB”的逆命題為假命題
D、命題“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”

查看答案和解析>>

同步練習(xí)冊(cè)答案