【題目】如圖, 是圓柱的母線, 的直徑, 是底面圓周上異于 的任意一點(diǎn), .

(1)求證:
(2)當(dāng)三棱錐 的體積最大時(shí),求 與平面 所成角的大。
(3) 上是否存在一點(diǎn) ,使二面角 的平面角為45°?若存在,求出此時(shí) 的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)解:∵ 平面 , 平面
,又 ,
平面
又∵ 平面 ,
∴平面 平面 ,
而平面 平面
平面 ,而 平面 ,

(2)解:設(shè) ,在 中,
平面 ,
是三棱錐 的高
因此三棱錐 的體積為


, ,
∴當(dāng) ,即 時(shí),三棱錐 體積的最大值為
此時(shí) 為等腰直角三角形,
與平面 所成角度為45°
(3)解:存在這樣的點(diǎn) ,理由如下:
的中點(diǎn)為 ,連接 ,
為等腰直角三角形
,由(1)知 ,
平面 ,
平面 ,∴
是二面角 的平面角,即
為等腰直角三角形, ,

中,
中,可解得
【解析】(1)根據(jù)圓的直徑所對(duì)圓周角為直角,以及SA與平面ABC垂直的性質(zhì),得到直線BC與平面SAC垂直,證明平面SBC與平面SAC垂直,再利用線面垂直的性質(zhì)證明結(jié)論。
(2)設(shè) AC=x ,用x表示出三棱錐S-ABC的體積,利用二次函數(shù)的最值問(wèn)題,求出結(jié)果。
(3)取SB的中點(diǎn)E,分別連接AE,DE,根據(jù)AD與平面SBC垂直,AD與SB垂直,證明SB與平面ADE垂直,證明 是二面角 A-SB-C 的平面角,求出結(jié)果。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)員在一次射擊測(cè)試中射靶6次,命中環(huán)數(shù)如下:9,5,8,4,6,10,
則:
平均命中環(huán)數(shù)為;命中環(huán)數(shù)的方差為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓 (a>b>0)與x軸,y軸的正半輛分別交于A,B兩點(diǎn),原點(diǎn)O到直線AB的距離為 ,該橢圓的離心率為 . (Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn) 的直線l與橢圓交于兩個(gè)不同的點(diǎn)M,N,求線段MN的垂直平分線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,直線y=4與y軸的交點(diǎn)為P,與C的交點(diǎn)為Q,且|QF|= |PQ|. (Ⅰ)求C的方程;
(Ⅱ)過(guò)F的直線l與C相交于A、B兩點(diǎn),若AB的垂直平分線l′與C相交于M、N兩點(diǎn),且A、M、B、N四點(diǎn)在同一圓上,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)為了解下屬某部門對(duì)本企業(yè)職工的服務(wù)情況,隨機(jī)訪問(wèn)50名職工,根據(jù)這50名職工對(duì)該部門的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中 的值,并估計(jì)該企業(yè)的職工對(duì)該部門評(píng)分不低于80的概率;
(2)從評(píng)分在 的受訪職工中,隨機(jī)抽取2人,求此2人評(píng)分都在 的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一臺(tái)機(jī)器由于使用時(shí)間較長(zhǎng),生產(chǎn)的零件有一些缺損,按不同轉(zhuǎn)速生產(chǎn)出來(lái)的零件有缺損的統(tǒng)計(jì)數(shù)據(jù)如下表所示.

轉(zhuǎn)速x(轉(zhuǎn)/秒)

16

14

12

8

每小時(shí)生產(chǎn)有缺損零件數(shù)y(個(gè))

11

9

8

5


(1)作出散點(diǎn)圖;
(2)如果y與x線性相關(guān),求出回歸直線方程;
(3)若實(shí)際生產(chǎn)中,允許每小時(shí)的產(chǎn)品中有缺損的零件最多為10個(gè),那么機(jī)器的運(yùn)轉(zhuǎn)速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校做了一次關(guān)于“感恩父母”的問(wèn)卷調(diào)查,從8~10歲,11~12歲,13~14歲,15~16歲四個(gè)年齡段回收的問(wèn)卷依次為:120份,180份,240份,x份.因調(diào)查需要,從回收的問(wèn)卷中按年齡段分層抽取容量為300的樣本,其中在11~12歲學(xué)生問(wèn)卷中抽取60份,則在15~16歲學(xué)生中抽取的問(wèn)卷份數(shù)為( )
A.60
B.80
C.120
D.180

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為F(1,0),且點(diǎn) 在橢圓C上,O為坐標(biāo)原點(diǎn). (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過(guò)定點(diǎn)T(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點(diǎn).

(1)求證:MN⊥CD;
(2)若∠PDA=45°,求證:MN⊥平面PCD.

查看答案和解析>>

同步練習(xí)冊(cè)答案