精英家教網 > 高中數學 > 題目詳情

【題目】蹴鞠起源于春秋戰(zhàn)國,是現代足球的前身.到了唐代,制作的蹴鞠已接近于現代足球,做法是:用八片鞣制好的尖皮縫制成圓形的球殼,在球殼內放一個動物膀胱,噓氣閉而吹之,成為充氣的球.如圖所示,將八個全等的正三角形縫制成一個空間幾何體,在幾何體內放一個氣球,往氣球內充氣使幾何體膨脹,當幾何體膨脹成球體(頂點位置不變)且恰好是原幾何體外接球時,測得球的體積是,則正三角形的邊長為(

A.B.C.D.

【答案】A

【解析】

由題意可知縫制成的空間幾何體是正八面體,設邊長為a,求得外接球的半徑為,列出方程即可得解.

圖中的八個全等的正三角形縫制成的空間幾何體是正八面體,如圖:

設正三角形的邊長為a,正八面體的外接球的半徑為,

易知.

依題意,整理得,所以.

故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知,設命題,方程存在實數解;命題:不等式對任意恒成立.

1)若為真命題,則的取值范圍;

2)若為假命題,為真命題,求取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某人某天的工作是:駕車從地出發(fā),到兩地辦事,最后返回地,三地之間各路段行駛時間及當天降水概率如表:

路段

正常行駛所需時間(小時)

上午降水概率

下午降水概率

2

0.3

0.6

2

0.2

0.7

3

0.3

0.9

若在某路段遇到降水,則在該路段行駛的時間需延長1小時,現有如下兩個方案:

方案甲:上午從地出發(fā)到地辦事,然后到達地,下午在地辦事后返回地;

方案乙:上午從地出發(fā)到地辦事,下午從地出發(fā)到達地, 辦事后返回.

1)設此人8點從地出發(fā),在各地辦事及午餐的累積時間為2小時.且采用方案甲,求他當日18點或18點之前能返回地的概率;

2)甲、乙兩個方案中,哪個方案有利于辦完事后能更早返回地?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,在平面四邊形ABCD中,,.沿BD折成如圖2所示的三棱錐,使.

1)證明:

2)求三棱錐與三棱錐的高的比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓截直線所得的線段的長度為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設直線與橢圓交于兩點,點是橢圓上的點,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了了解公司800名員工對公司食堂組建的需求程度,將這些員工編號為12,3,,800,對這些員工使用系統抽樣的方法等距抽取100人征求意見,有下述三個結論:①若25號員工被抽到,則105號員工也會被抽到;②若32號員工被抽到,則1100號的員工中被抽取了10人;③若88號員工未被抽到,則10號員工一定未被抽到;其中正確的結論個數為(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】各項均為非負整數的數列同時滿足下列條件:

;② ;③的因數().

(Ⅰ)當時,寫出數列的前五項;

(Ⅱ)若數列的前三項互不相等,且時, 為常數,求的值;

(Ⅲ)求證:對任意正整數,存在正整數,使得時, 為常數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列的前項和為,對于任意的,都有.

1)求數列的首項及數列的遞推關系式;

2)若數列成等比數列,求常數的值,并求數列的通項公式;

3)數列中是否存在三項、,它們組成等差數列?若存在,請求出一組適合條件的項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】國家每年都會對中小學生進行體質健康監(jiān)測,一分鐘跳繩是監(jiān)測的項目之一.今年某小學對本校六年級300名學生的一分鐘跳繩情況做了統計,發(fā)現一分鐘跳繩個數最低為10,最高為189.現將跳繩個數分成,,,6組,并繪制出如下的頻率分布直方圖.

1)若一分鐘跳繩個數達到160為優(yōu)秀,求該校六年級學生一分鐘跳繩為優(yōu)秀的人數;

2)上級部門要對該校體質監(jiān)測情況進行復查,發(fā)現每組男、女學生人數比例有很大差別,組男、女人數之比為,組男、女人數之比為,組男、女人數之比為,組男、女人數之比為組男、女人數之比為,組男、女人數之比為.試估計此校六年級男生一分鐘跳繩個數的平均數(同一組中的數據用該組區(qū)間的中點值作代表,結果保留整數).

查看答案和解析>>

同步練習冊答案