在棱長為1的正方體ABCD-A1B1C1D1中,E,F(xiàn),G,H分別是棱AB,CC1,D1A1,BB1的中點;
(1)證明:FH∥平面A1EG;
(2)求三棱錐A1-EFG的體積.

解:(1)證明:∵FH∥B1C1,B1C1∥A1G,∴FH∥A1G.
又A1G?平面A1GE,F(xiàn)H?平面A1GE,
∴FH∥平面A1GE
(2)解:連接HA1,HE,HG,由(1)得FH∥平面A1GE,

=,
∵A1G=
==
分析:(1)通過證明FH∥A1G.利用A1G?平面A1GE,F(xiàn)H?平面A1GE,推出FH∥平面A1GE
(2)連接HA1,HE,HG,利用,求出與A1G,即可得到所求幾何體的體積.
點評:本題考查直線與平面平行的判定定理的應用,幾何體的體積的求法,考查計算能力、轉化思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

11、如圖所示在棱長為1的正方體ABCD-A1B1C1D1中,點P在線段AD1上運動,給出以下四個命題:
①異面直線C1P和CB1所成的角為定值;
②二面角P-BC1-D的大小為定值;
③三棱錐D-BPC1的體積為定值;
④直線CP與直線ABC1D1所成的角為定值.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,異面直線AB與CD1之間的距離是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,M和N分別為A1B1 和BB1的中點,那么直線AM與CN所成角的余弦值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科)如圖,在棱長為1的正方體A'C中,過BD及B'C'的中點E作截面BEFD交C'D'于F.
(1)求截面BEFD與底面ABCD所成銳二面角的大。
(2)求四棱錐A'-BEFD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2004•武漢模擬)(文科)在棱長為1的正方體ABCD-A′B′C′D′中,AC′為對角線,M、N分別為BB′,B′C′中點,P為線段MN中點.
(1)求DP和平面ABCD所成的角的正切;
(2)求四面體P-AC′D′的體積.

查看答案和解析>>

同步練習冊答案