在空間直角坐標(biāo)系中,已知.若分別是三棱錐坐標(biāo)平面上的正投影圖形的面積,則(   )
A.B.
C.D.
D

試題分析:三棱錐在平面上的投影為,所以
設(shè)在平面、平面上的投影分別為、,則在平面、上的投影分別為、,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053308793655.png" style="vertical-align:middle;" />,,所以
故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖6,四棱柱的所有棱長都相等,,四邊形和四邊形為矩形.
(1)證明:底面;
(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱中,
。M、N分別是AC和BB1的中點(diǎn)。
(1)求二面角的大小。
(2)證明:在AB上存在一個(gè)點(diǎn)Q,使得平面⊥平面,   
并求出的長度。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,平面平面,//,,
,且,.
(1)求證:平面;
(2)求和平面所成角的正弦值;
(3)在線段上是否存在一點(diǎn)使得平面平面,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2013•湖北)如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點(diǎn).
(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線l與圓O的另一個(gè)交點(diǎn)為D,且點(diǎn)Q滿足.記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(理)已知直三棱柱中,,是棱的中點(diǎn).如圖所示.
 
(1)求證:平面
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,四邊形是邊長為的正方形,、分別是邊、上的點(diǎn)(M不與AD重合),且于點(diǎn),沿將正方形折成直二面角
(1)當(dāng)平行移動時(shí),的大小是否發(fā)生變化?試說明理由;
(2)當(dāng)在怎樣的位置時(shí),、兩點(diǎn)間的距離最?并求出這個(gè)最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在四棱錐P-ABCD中,側(cè)面PAD為正三角形,底面ABCD為正方形,側(cè)面PAD⊥底面ABCD,M為底面ABCD內(nèi)的一個(gè)動點(diǎn),且滿足MP=MC,則點(diǎn)M在正方形ABCD內(nèi)的軌跡為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知向量=(2,4,5),=(3,x,y),若,則(  )
A.x=6,y=15B.x=3,y=
C.x=3,y=15D.x=6,y=

查看答案和解析>>

同步練習(xí)冊答案