【題目】定義在上的函數,若已知其在內只取到一個最大值和一個最小值,且當時函數取得最大值為;當,函數取得最小值為.
(1)求出此函數的解析式;
(2)是否存在實數,滿足不等式?若存在,求出的范圍(或值),若不存在,請說明理由;
(3)若將函數的圖像保持橫坐標不變縱坐標變?yōu)樵瓉淼?/span>得到函數,再將函數的圖像向左平移個單位得到函數,已知函數的最大值為,求滿足條件的的最小值.
科目:高中數學 來源: 題型:
【題目】已知圓心在坐標原點的圓O經過圓與圓的交點,A、B是圓O與y軸的交點,P為直線y=4上的動點,PA、PB與圓O的另一個交點分別為M、N.
(1)求圓O的方程;
(2)求證:直線MN過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數滿足,且的最小值是.
(1)求的解析式;
(2)若關于的方程在區(qū)間上有唯一實數根,求實數的取值范圍;
(3)函數,對任意都有恒成立,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知t為實數,函數,其中
(1)若,求的取值范圍。
(2)當時,的圖象始終在的圖象的下方,求t的取值范圍;
(3)設,當時,函數的值域為,若的最小值為,求實數a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在區(qū)間(0,+∞)內的單調函數,且對x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設f′(x)為f(x)的導函數,則函數g(x)=f(x)﹣f′(x)的零點個數為( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com