7.若直線l1:2x-y+4=0,直線l2:2x-y-6=0都是⊙M:(x-a)2+(y-1)2=r2的切線,則⊙M的標準方程為(x-1)2+(y-1)2=5.

分析 根據(jù)題意,分析可得線l1與直線l2之間的距離就是⊙M的直徑,由平行線的距離公式計算可得d的值,即可得r的值,又由圓心在直線2x-y-1=0上,則將圓心坐標代入計算可得a的值,將a、r的值代入圓的標準方程即可得答案.

解答 解:根據(jù)題意,直線l1:2x-y+4=0,直線l2:2x-y-6=0都是⊙M:(x-a)2+(y-1)2=r2的切線,
而直線l1∥l2,則直線l1與直線l2之間的距離就是⊙M的直徑,即d=2r,
而d=$\frac{|4-(-6)|}{\sqrt{4+1}}$=2$\sqrt{5}$,
則r=$\sqrt{5}$,
且圓心(a,1)在直線2x-y+$\frac{4+(-6)}{2}$=0,即2x-y-1=0上,
則有2a-1-1=0,解可得a=1,
圓心的坐標為(1,1);
則⊙M的標準方程(x-1)2+(y-1)2=5,
故答案為:(x-1)2+(y-1)2=5.

點評 本題考查圓的標準方程,注意兩直線平行,平行線間的距離就是圓的直徑.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.某職稱晉級評定機構對參加某次專業(yè)技術考試的100人的成績進行了統(tǒng)計,繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級成功,否則晉級失敗(滿分100分).
(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有85%的把握認為“晉級成功”與性別有關?
 晉級成功晉級失敗合計
16  
  50
合計   
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
P(K2≥k)0.400.250.150.100.050.025
k0.7801.3232.0722.7063.8415.024
(Ⅲ)將頻率視為概率,從本次考試的所有人員中,隨機抽取4人進行約談,記這4人中晉級失敗的人數(shù)為X,求X的分布列與數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設雙曲線Γ的方程為x2-$\frac{{y}^{2}}{3}$=1,過其右焦點F且斜率不為零的直線l1與雙曲線交于A、B兩點,直線l2的方程為x=t,A、B在直線l2上的射影分別為C、D.
(1)當l1垂直于x軸,t=-2時,求四邊形ABDC的面積;
(2)當t=0,l1的斜率為正實數(shù),A在第一象限,B在第四象限時,試比較$\frac{|AC|•|FB|}{|BD|•|FA|}$和1的大小,并說明理由;
(3)是否存在實數(shù)t∈(-1,1),使得對滿足題意的任意直線l1,直線AD和直線BC的交點總在x軸上,若存在,求出所有的t的值和此時直線AD與BC交點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)f(x)的圖象關于x=-1對稱,且f(x)在(-1,+∞)上單調,若數(shù)列{an}是公差不為0的等差數(shù)列,且f(a50)=f(a51),則{an}的前100項的和為( 。
A.-200B.-100C.-50D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知命題p:若a>|b|,則a2>b2;命題q:若x2=4,則x=2,.下列說法正確的是( 。
A.“p∨q”為假命題B.“p∧q”為假命題C.“¬p”為真命題D.“¬q”為假命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,輸出的y等于(  )
A.$\frac{1}{2}$B.0C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知雙曲線C:$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1的左右焦點分別為F1,F(xiàn)2
(1)若雙曲線右支上一點A使得△AF1F2的面積為$\sqrt{26}$,求點A的坐標;
(2)已知O為坐標原點,圓D:(x-3)2+y2=r2(r>0)與雙曲線C右支交于M,N兩點,點P為雙曲線C上異于M,N的一動點,若直線PM,PN與x軸分別交于點R,S,求證:|OR|•|OS|為常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,若輸入m=4,n=6,則輸出a=( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.現(xiàn)有一大批種子,其中優(yōu)良種占30%,從中任取8粒,記X為8粒種子中的優(yōu)質良種粒數(shù),則X的期望是:2.4.

查看答案和解析>>

同步練習冊答案