13.如圖,長方體ABCD-A1B1C1D1,AB=BC=2,AA1=$\sqrt{3}$,M為A1D1的中點(diǎn),P為底面四邊形ABCD內(nèi)的動(dòng)點(diǎn),且滿足PM=PC,則點(diǎn)P的軌跡的長度為( 。
A.$\sqrt{3}$B.3C.$\frac{2π}{3}$D.$\sqrt{5}$

分析 取AB 的中點(diǎn)E,由題意,點(diǎn)P的軌跡為DE的長度,利用勾股定理求值.

解答 解:取AB 的中點(diǎn)E,AD的中點(diǎn)N,
如圖,因?yàn)镸C在底面的射影為NC,并且DE⊥NC,所以DE⊥MC,
所以DE上的點(diǎn)到M,C 的距離相等,P在DE上,所以PM=PC,
所以點(diǎn)P的軌跡為DE,
因?yàn)殚L方體ABCD-A1B1C1D1,AB=BC=2,AA1=$\sqrt{3}$,M為A1D1的中點(diǎn),
所以DE=$\sqrt{{2}^{2}+{1}^{1}}=\sqrt{5}$;
故選D.

點(diǎn)評(píng) 本題考查了動(dòng)點(diǎn)的軌跡以及長方體中線段長度;關(guān)鍵是發(fā)現(xiàn)滿足條件的軌跡.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù).如三角形數(shù)1,3,6,10,第n個(gè)三角形數(shù)為$\frac{{n({n+1})}}{2}=\frac{1}{2}{n^2}+\frac{1}{2}$n.記第n個(gè)k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個(gè)數(shù)的表達(dá)式:
三角形數(shù)     N(n,3)=$\frac{1}{2}{n^2}+\frac{1}{2}$n
正方形數(shù)      N(n,4)=n2
五邊形數(shù)      N(n,5)=$\frac{3}{2}{n^2}-\frac{1}{2}$n
六邊形數(shù)      N(n,6)=2n2-n
可以推測N(n,k)的表達(dá)式,由此計(jì)算N(10,24)=1000.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,x∈R,則f(x)零點(diǎn)的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3,設(shè)a>-1,且當(dāng)x∈[-$\frac{a}{2}$,$\frac{1}{2}$]時(shí),f(x)≤g(x),則a的取值范圍是(-1,$\frac{4}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=logax,a>0,a≠1.
(1)若復(fù)數(shù)z=(a+2i)(1+i)(i為虛數(shù)單位)是純虛數(shù),求方程f(x)=-2的根;
(2)若f(x)=logax在區(qū)間[1,2]上有最大值1,求不等式f(x-1)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.一艘海輪從A出發(fā),沿北偏東75°的方向航行(2$\sqrt{3}$-2)nmile到達(dá)海島B,然后從B出發(fā),沿北偏東15°的方向航行4nmile到達(dá)海島C.
(1)求AC的長;
(2)如果下次航行直接從A出發(fā)到達(dá)C,求∠CAB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.有以下四個(gè)等式:0+$\overrightarrow{a}$=$\overrightarrow{a}$,0•$\overrightarrow{a}$=0,3•$\overrightarrow{0}$=0,$\overrightarrow{a}$-$\overrightarrow{a}$=0.其中正確的等式的個(gè)數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,m),且$\overrightarrow{a}⊥\overrightarrow$,則實(shí)數(shù)m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知復(fù)數(shù)z=1-i.
(1)設(shè)w=z(1+i)-1-3i,求|w|;
(2)如果$\frac{{z}^{2}+az+b}{1+i}$=i,求實(shí)數(shù)a,b的值.

查看答案和解析>>

同步練習(xí)冊答案