設(shè)函數(shù)f(x)=|lgx|,若0<a<b,且f(a)>f(b).證明:ab<1.

答案:略
解析:

由已知

0ab,f(a)f(b)

a、b不能同時在區(qū)間[1,+∞)上,又由于0ab,故必有a(0,1);若b(01),顯然有ab1

b[1,+∞),由f(a)f(b)0,有-lgalgb0,故lg(ab)0,∴ab1


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a(x+
1x
)+2lnx,g(x)=x2

(I)若a>0且a≠2,直線l與函數(shù)f(x)和函數(shù)g(x)的圖象相切于一點,求切線l的方程.
(II)若f(x)在[2,4]內(nèi)為單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)二模)設(shè)函數(shù)f(x)=alnx+
2
a
2
 
x
(a≠0)

(1)已知曲線y=f(x)在點(1,f(1))處的切線l的斜率為2-3a,求實數(shù)a的值;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)在(1)的條件下,求證:對于定義域內(nèi)的任意一個x,都有f(x)≥3-x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•順義區(qū)二模)設(shè)函數(shù)f(x)=
ax
x2+b
(a>0)

(1)若函數(shù)f(x)在x=-1處取得極值-2,求a,b的值;
(2)若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)單調(diào)遞增,求b的取值范圍;
(3)在(1)的條件下,若P(x0,y0)為函數(shù)f(x)=
ax
x2+b
圖象上任意一點,直線l與f(x)的圖象切于點P,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•太原模擬)設(shè)函數(shù)f(x)=a(x+
1
x
)+2lnx,g(x)=x2

(1)若a=
1
2
時,直線l與函數(shù)f(x)和函數(shù)g(x)的圖象相切于同一點,求切線l的方程;
(2)若f(x)在[2,4]內(nèi)為單調(diào)函數(shù),求實數(shù)a的取值范圍.
說明:請考生在第22、23、24三題中任選一題作答,如果多做,則按所做第一題記分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3
2
-
3
sin2ωx-sinωxcosωx(ω>0)
,且y=f(x)的圖象的一個對稱中心到最近的對稱軸的距離為
π
4

(l)求ω的值;
(2)將函數(shù)y=f(x)圖象向左平移
π
3
個單位,得到函數(shù)y=g(x)的圖象,求y=g(x)在區(qū)間[0,
π
2
]
上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案