三棱錐P-ABC,PA⊥面ABC,AC⊥BC,點(diǎn)E、F分別是A在PB、PC上的射影,則 ( 。
分析:由題設(shè)條件及選項知,此題是一個證明二面角的平面角的問題,由根據(jù)定義,二面角平面角的兩個邊與兩面的交線垂直,依據(jù)圖形及題設(shè)條件進(jìn)行觀察,C選項可能正確,故重點(diǎn)C選項,
解答:解:如圖,∵三棱錐P-ABC,PA⊥面ABC
∴PA⊥BC,又AC⊥BC
由線面垂直的定理知BC⊥面PAC,又AF?面PAC,可得AF⊥BC
又點(diǎn)E、F分別是A在PB、PC上的射影可得AF⊥PC,AE⊥PB
又BC∩PC=C
∴AF⊥面PCB,可AF⊥PB
∴PB⊥面FEA,
故角AEF即為二面角C-PB-A的平面角
故選C
點(diǎn)評:本題考查與二面角有關(guān)的立體幾何綜合題,解題的關(guān)鍵是熟練掌握二面角平面角的定義以及理解題設(shè)條件,證明出二面角的平面角
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、下面關(guān)于三棱錐P-ABC的五個命題中,正確的命題有
①③④⑤
.①當(dāng)△ABC為等邊三角形,側(cè)面與底面所成的二面角都相等時,三棱錐P-ABC為正三棱錐;②當(dāng)△ABC為等邊三角形,側(cè)面都為等腰三角形時,三棱錐P-ABC為正三棱錐;③當(dāng)△ABC為等邊三角形,點(diǎn)A在側(cè)面PBC上的射影是三角形PBC的垂心時,P-ABC為正三棱錐;④若三棱錐P-ABC各棱相等時,它的外接球半徑和高的比為3:4:⑤當(dāng)三棱錐P-ABC各棱長相等時,若動點(diǎn)M在側(cè)面PAB內(nèi)運(yùn)動,且點(diǎn)M到面ABC的距離與點(diǎn)M到點(diǎn)P的距離相等,則M的軌跡為橢圓的一部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中P、A、B、C都在球O面上,且PA、PB、PC兩兩互相垂直,且PA=1、PB=2、PC=3,則該球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐P-ABC中,點(diǎn)P,A,B,C都在半徑為
3
的球面上,若PA,PB,PC兩兩互相垂直,則三棱錐P-ABC的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,給出下列四個命題:
①如果PA⊥BC,PB⊥AC,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的垂心;
②如果點(diǎn)P到△ABC的三邊所在直線的距離都相等,那么點(diǎn)P在平面ABC內(nèi)的射影是△ABC的內(nèi)心;
③如果棱PA和BC所成的角為60°,PA=BC=2,E、F分別是棱PB、AC的中點(diǎn),那么EF=1;
④如果三棱錐P-ABC的各條棱長均為1,則該三棱錐在任意一個平面內(nèi)的射影的面積都不大于
12

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中,PA⊥平面ABC,AB⊥BC.
(Ⅰ)證明:平面PAB⊥平面PBC;
(Ⅱ)若PA=
6
,PC=3,PB與底面ABC成60°角,求三棱錐P-ABC的體積.

查看答案和解析>>

同步練習(xí)冊答案