某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).
(Ⅰ)A類工人中和B類工人各抽查多少工人?
(Ⅱ)從A類工人中抽查結果和從B類工人中的抽查結果分別如下表1和表2
表1:
生產(chǎn)能力分組 [100,110) [110,120) [120,130) [130,140) [140,150)
人數(shù) 4 8 x 5 3
表2:
生產(chǎn)能力分組 [110,120) [120,130) [130,140) [140,150)
人數(shù)     6     y     36     18
先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結論)
分析:(I)根據(jù)工人有1000名,用分層抽樣的方法從中選出100名,得到每個個體被抽到的概率,用A類工人中和B類工人乘以每個個體被抽到的概率得到結果;
(II)利用分層抽樣的思想確定出A類工人和B類工人分別被抽查到的人數(shù),然后根據(jù)統(tǒng)計表格利用方程確定出x,y的值,完成頻率分布直方圖,通過頻率分布直方圖判斷出A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更。
解答:解:(Ⅰ) a類工人中和b類工人中分別抽查
100
1000
×250
=25名和
100
1000
×750
=75名,
∴a類工人中和b類工人中分別抽查25名和75名…4分
(Ⅱ)(。┯ 4+8+x+5+3=25,得 x=5,
由6+y+36+18=75,得 y=15                       …8分
(ii)頻率分布直方圖如下
       
從直方圖可以判斷:B類工人中個體間的差異程度更小…12分.
點評:本題考查統(tǒng)計的基本知識,考查用樣本估計總體的思想,考查隨機抽樣的基本思想和方法,分層抽樣的思想,考查頻率分布直方圖的繪畫、學生的畫圖、識圖能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù)).
(I)求甲、乙兩工人都被抽到的概率,其中甲為A類工人,乙為B類工人;
(II)從A類工人中的抽查結果和從B類工人中的抽插結果分別如下表1和表2.
表1:
生產(chǎn)能力分組 [100,110] [110,120] [120,130] [130,140] [140,150]
人數(shù) 4 8 x 5 3
表2:
生產(chǎn)能力分組 [110,120] [120,130] [130,140] [140,150]
人數(shù) 6 y 36 18
(i)先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更。浚ú挥糜嬎,可通過觀察直方圖直接回答結論)
精英家教網(wǎng)
(ii)分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù),同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類、B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù)).
(1)求甲、乙兩工人都被抽到的概率,其中甲為A類工人,乙為B類工人;
(2)從A類工人中的抽查結果和從B類工人中的抽查結果分別如下表1和表2.
表1:
精英家教網(wǎng)
表2:
精英家教網(wǎng)
①先確定x、y,再完成頻率分布直方圖,就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結論)
精英家教網(wǎng)

②分別估計A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計該工廠工人的生產(chǎn)能力的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中抽查結果和從B類工人中的抽查結果分別如下表1和表2
表1:
生產(chǎn)能力分組 [100,110) [110,120) [120,130) [130,140) [140,150)
人數(shù) 4 8 x 5 3
表2:
生產(chǎn)能力分組 [110,120) [120,130) [130,140) [140,150)
人數(shù) 6 y 36 18
(1)先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更小?(不用計算,可通過觀察直方圖直接回答結論)(注意:本題請在答題卡上作圖)
(2)分別估計A類工人和B類工人生產(chǎn)能力的眾數(shù)、中位數(shù)和平均數(shù).(精確到0.1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人)另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣的方法(按A類、B類分兩層)從該工廠的工人中抽取100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中的抽查結果和從B類工人中的抽查結果如下表1和表2.
表1
生產(chǎn)能力分組 [110,120) [120,130) [130,140) [140,150)
人數(shù) 8 x 3 2
表2
生產(chǎn)能力分組 [110,120) [120,130) [130,140) [140,150)
人數(shù) 6 y 27 18
(Ⅰ)先確定x、y的值,再補齊下列頻率分布直方圖.

(Ⅱ)完成下面2×2列聯(lián)表,并回答能否有99.9%的把握認為“工人的生產(chǎn)能力與工人的類別有關”?
生產(chǎn)能力分組 [110,130) [130,150) 合計
A類工人
B類工人
合計
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0,05 0.025 0.01 0.005
k 3.841 5.024 6.635 7.879

查看答案和解析>>

同步練習冊答案