設(shè)數(shù)列a1,a2,…,an,…的前n項(xiàng)的和Sn與an的關(guān)系是,其中b是與n無(wú)關(guān)的常數(shù),且b≠-1.
(1)求an和an-1的關(guān)系式;
(2)寫(xiě)出用n和b表示an的表達(dá)式;
(3)當(dāng)0<b<1時(shí),求極限
【答案】分析:(1)由sn和an的關(guān)系式an=,求出數(shù)列的遞推公式.
(2)把(1)的結(jié)果逐層代入觀(guān)察其特點(diǎn),歸納推理出an的式子.
(3)根據(jù)題意把a(bǔ)n代入所給的式子進(jìn)行整理,利用b的范圍求出極限.
解答:解:
=
解得
,∴
由(1)得

=
=
=
由此推得




∴當(dāng)
點(diǎn)評(píng):本題利用an=,求出數(shù)列的遞推公式;再求通項(xiàng)公式時(shí)利用了歸納推理寫(xiě)出即可,題中沒(méi)要求證明這就降低難度,第三小題利用前兩題中的結(jié)果及b的范圍求出.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列a1,a2,…,an,…的前n項(xiàng)的和Sn與an的關(guān)系是Sn=-ban+1-
1
(1+b)n
,其中b是與n無(wú)關(guān)的常數(shù),且b≠-1.
(1)求an和an-1的關(guān)系式;
(2)寫(xiě)出用n和b表示an的表達(dá)式;
(3)當(dāng)0<b<1時(shí),求極限
lim
n→∞
Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列a1,a2,…,an,…的前n項(xiàng)的和Sn與an的關(guān)系是Sn=kan+1,(其中k是與n無(wú)關(guān)的常數(shù),且k≠1).
(1)試寫(xiě)出用n,k表示的an的表達(dá)式;
(2)若
limn→∞
sn
=1,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列a1,a2,…,an,…中的每一項(xiàng)都不為0.證明:{an}為等差數(shù)列的充分必要條件是:對(duì)任何n∈N,都有
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
n
a1an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列a1,a2,…,an,…滿(mǎn)足a1=a2=1,a3=2,且對(duì)任何自然數(shù)n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,則a1+a2+…+a100的值是
200
200

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:安徽省高考真題 題型:證明題

設(shè)數(shù)列a1,a2,…,an,…中的每一項(xiàng)都不為0,證明,{an}為等差數(shù)列的充分必要條件是:對(duì)任何n∈N+都有。

查看答案和解析>>

同步練習(xí)冊(cè)答案