等差數(shù)列的前項(xiàng)和,若,,則(   )
A.153B.182C.242D.273
D

試題分析:根據(jù)等差數(shù)列的前項(xiàng)和的性質(zhì):數(shù)列依然成等差數(shù)列可知成等差數(shù)列,所以,解得,選D.項(xiàng)和的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是等差數(shù)列,首項(xiàng),前項(xiàng)和為.令,的前項(xiàng)和.數(shù)列是公比為的等比數(shù)列,前項(xiàng)和為,且.
(1)求數(shù)列、的通項(xiàng)公式;
(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正數(shù)數(shù)列中,,前項(xiàng)和為,對(duì)任意,、成等差數(shù)列.
(1)求
(2)設(shè),數(shù)列的前項(xiàng)和為,當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S4,S2,S3成等差數(shù)列,且a2+a3+a4=-18.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)n,使得Sn≥2 013?若存在,求出符合條件的所有n的集合;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}中,a1=1,前n項(xiàng)和為Sn且Sn+1=Sn+1,n∈N*.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求數(shù)列{}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列{an}中,a3=3,a1+a4=5.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn,求數(shù)列{bn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列1,a1,a2,9是等差數(shù)列,數(shù)列1,b1b2,b3,9是等比數(shù)列,則的值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列{an}中,a1=142,d=-2,從第一項(xiàng)起,每隔兩項(xiàng)取出一項(xiàng),構(gòu)成新的數(shù)列{bn},則此數(shù)列的前n項(xiàng)和Sn取得最大值時(shí)n的值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若數(shù)列{an}是等差數(shù)列,且a3+a7=4,則數(shù)列{an}的前9項(xiàng)和S9等于(  )
A.9B.18C.36D.72

查看答案和解析>>

同步練習(xí)冊(cè)答案