精英家教網 > 高中數學 > 題目詳情

某興趣小組為了研究晝夜溫差大小與患感冒人數多少之間的關系,分別到氣象站和醫(yī)院抄錄了1至6月份每月15日的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:

該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.

(1)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出y關于x的線性回歸方程;

(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性的回歸方程是否理想?

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:
日期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日
晝夜溫差x(℃) 10 11 13 12 8 6
就診人數y(人) 22 25 29 26 16 12
該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
(Ⅰ)求選取的2組數據恰好是相鄰兩個月的概率;
(Ⅱ)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出y關于x的線性回歸方程y=bx+a;
(Ⅲ)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

查看答案和解析>>

科目:高中數學 來源: 題型:

某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與醫(yī)院抄錄1至6月份每月10號的晝夜溫差情況與患感冒而就診的人數,得到如下資料:
日    期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日
晝夜溫差x(℃) 10 11 13 12 8 6
就診人數y(個) 22 25 29 26 16 12
該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
(Ⅰ)求選取的2組數據恰好是相鄰兩個月的概率;
(Ⅱ)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出y關于x的線性回歸方程
y
=bx+a;
(Ⅲ)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考公式:線性回歸方程的系數公式為b=
n
i-1
x
i
y
i
-n
.
x
.
y
n
i-1
x
2
i
-n
-2
x
=
n
i-1
(xi-
.
x
)(yi-
.
y
)
n
i-1
(xi-
.
x
)
2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中數學 來源: 題型:

某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與醫(yī)院抄錄1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如下圖資料:
日期 1月10日 2月10日 3月10日 4月10日 5月10日 6月10日
晝夜溫差x(℃) 10 11 13 12 8 6
就診人數y(個) 22 25 29 26 16 12
該興趣小組的研究方案是先從這6組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的兩組數據檢驗.
(1)求選取的兩組數據恰好相鄰的概率;
(2)若選取的是1月與6月的兩組數據,請據2~5月份的數據,求出y關于x的線性回歸方程
y
=
b
x+
a
;
(3)若線性回歸方程得出的估計數據與所選出的檢驗數據的誤差不超過2人,則認為得到的線性回歸方程是理想的.試問該興趣小組得到的線性回歸方程是否理想?

查看答案和解析>>

科目:高中數學 來源: 題型:

某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10日的晝夜溫差情況與因患感冒而就診的人數,得到如下資料:

日期

1月

10日

2月

10日

3月

10日

4月

10日

5月

10日

6月

10日

晝夜溫

差x(℃)

10

11

13

12

8

6

就診人

數y(人)

22

25

29

26

16

12

該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求回歸直線方程,再用被選取的2組數據進行檢驗.

(1)求選取的2組數據恰好是相鄰兩個月的概率;

(2)若選取的是1月與6月的兩組數據,請根據2月至5月份的數據,求出y關于x的回歸直線方程;

(3)若由回歸直線方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的回歸直線方程是理想的,試問該小組所得回歸直線方程是否理想?

(參考公式:=, )

查看答案和解析>>

同步練習冊答案