精英家教網 > 高中數學 > 題目詳情
若|
a
+
b
|=|
a
-
b
|,則
a
b
的夾角為
 
°.
分析:根據所給的兩個向量的和與差的模長相等,把等式兩邊平方,移項合并同類項,得到兩個向量的數量積等于0,得到;兩個向量的夾角是90°.
解答:解:∵|
a
+
b
|=|
a
-
b
|,
a
2
+2
a
b
b
2
=
a
2
-2
a
b
+
b
2

a
b
=0

∴兩個向量的夾角是90°
故答案為:90°.
點評:本題考查數量積表示兩個向量的夾角,本題解題的關鍵是求出兩個向量的數量積等于0,本題是一個基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

a
b
,
c
是三個非零向量,給出以下四個命題:
①若
a
b
+|
a
||
b
|=0
,則
a
.
b

②若
a
2
=
b
2
,則
a
=
b
a
=-
b

③若|
a
+
b
|=|
a
-
b
|
,則
a
b

④若
a
b
=
a
c
,則
b
=
c

則所有正確命題的序號為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

關于平面向量
a
b
,
c
,有下列三個命題:
①若
a
b
=
a
c
,則
b
=
c
、
②若
a
=(1,k),
b
=(-2,6),
a
b
,則k=-3.
③非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|,則
a
a
+
b
的夾角為60°.
其中真命題的序號為
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知下列命題中真命題的個數是( 。
(1)若k∈R,且k
b
=
0
,則k=0或
b
=
0

(2)若
a
b
=0
,則
a
=
0
b
=
0

(3)若不平行的兩個非零向量
.
a
,
.
b
,滿足|
.
a
|=|
.
b
|
,則(
.
a
+
.
b
)•(
.
a
-
.
b
)=0

(4)若
.
a
.
b
平行,則
a
b
=|
.
a
|•|
.
b
|

查看答案和解析>>

科目:高中數學 來源: 題型:

下列命題中正確的有
②③④
②③④
(填序號)
①若
a
b
滿足
a
b
>0,則
a
b
所成的角為銳角;
②若
a
b
不共線,
m
=λ1
a
+λ2
b
,
n
=μ1
a
+μ2
b
(λ1,λ2,μ1,μ2∈R),則
m
n
的充要條件是λ1μ22μ1=0;
③若
OA
+
OB
+
OC
=
O
,且|
OA
|=|
OB
|=|
OC
|
,則△ABC是等邊三角形;
④若
a
b
為非零向量,且
a
b
,則|
a
+
b
|=|
a
-
b
|;
⑤設
a
,
b
,
c
為非零向量,若
a
b
=
c
b
,則
a
=
c

⑥若
a
,
b
c
為非零向量,則
a
•(
b
c
)=(
a
b
)•
c

查看答案和解析>>

同步練習冊答案