(A)AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則AC長為________
(B)若不等式|x-2|+|x+3|<a的解集為∅,則a的取值范圍為________.
(C)參數(shù)方程數(shù)學(xué)公式(α是參數(shù))表示的曲線的普通方程是________.

    (-∞,5]    (|x|≤2)
分析:(A)延長BA交EF于點M,由直角三角形相似求得MA,利用直角三角形中的邊角關(guān)系求出cos∠COA,余弦定理求出 AC.
(B)|x-2|+|x+3|最小值為5,不等式|x-2|+|x+3|<a的解集為∅,故 a<5.
(C)參數(shù)方程(α是參數(shù))化為普通方程為 y=3-,|x|≤2
解答:(A)延長BA交EF于點M,由于直角三角形MAD和直角三角形 MOC相似,∴=,
=,∴MA=6,cos∠COA=cos∠DAM===
由余弦定理可得 AC==2,故答案為 2
(B)|x-2|+|x+3|表示數(shù)軸上的x對應(yīng)點到-3和2對應(yīng)點距離之和,最小值為5,不等式|x-2|+|x+3|<a的解集為∅,
故 a<5,故答案為   (-∞,5].
(C)參數(shù)方程(α是參數(shù))化為普通方程為 y=3-,|x|≤2,故答案為  y=3-,
|x|≤2,
點評:本題考查把參數(shù)方程化為普通方程的方法,余弦定理,絕對值不等式的解法,(A)中求出cos∠COA 的值,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,某城市設(shè)立以城中心O為圓心、r公里為半徑的圓形保護(hù)區(qū),從保護(hù)區(qū)邊緣起,在城中心O正東方向上有一條高速公路PB、西南方向上有一條一級公路QC,現(xiàn)要在保護(hù)區(qū)邊緣PQ弧上選擇一點A作為出口,建一條連接兩條公路且與圓O相切的直道BC.已知通往一級公路的道路AC每公里造價為a萬元,通往高速公路的道路AB每公里造價是m2a萬元,其中a,r,m為常數(shù),設(shè)∠POA=θ,總造價為y萬元.
(1)把y表示成θ的函數(shù)y=f(θ),并求出定義域;
(2)當(dāng)m=
6
+
2
2
時,如何確定A點的位置才能使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

設(shè)是一常數(shù),過點的直線與拋物線交于相異兩點A、B,以線段AB為直經(jīng)作圓HH為圓心)。試證拋物線頂點在圓H的圓周上;并求圓H的面積最小時直線AB的方程.

  
     

Y

     
 

 


  
     

y2=2px

     
 

  
     

B

     
 

 

 

 

 


  
     

X

     
 

  
     

Q(2p,0)

     
 
  
     

O

     
 

  
     

A

     
 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某城市設(shè)立以城中心O為圓心、r公里為半徑的圓形保護(hù)區(qū),從保護(hù)區(qū)邊緣起,在城中心O正東方向上有一條高速公路PB、西南方向上有一條一級公路QC,現(xiàn)要在保護(hù)區(qū)邊緣PQ弧上選擇一點A作為出口,建一條連接兩條公路且與圓O相切的直道BC.已知通往一級公路的道路AC每公里造價為a萬元,通往高速公路的道路AB每公里造價是m2a萬元,其中a,r,m為常數(shù),設(shè)∠POA=θ,總造價為y萬元.
(1)把y表示成θ的函數(shù)y=f(θ),并求出定義域;
(2)當(dāng)數(shù)學(xué)公式時,如何確定A點的位置才能使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省宿遷市沭陽縣高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某城市設(shè)立以城中心O為圓心、r公里為半徑的圓形保護(hù)區(qū),從保護(hù)區(qū)邊緣起,在城中心O正東方向上有一條高速公路PB、西南方向上有一條一級公路QC,現(xiàn)要在保護(hù)區(qū)邊緣PQ弧上選擇一點A作為出口,建一條連接兩條公路且與圓O相切的直道BC.已知通往一級公路的道路AC每公里造價為a萬元,通往高速公路的道路AB每公里造價是m2a萬元,其中a,r,m為常數(shù),設(shè)∠POA=θ,總造價為y萬元.
(1)把y表示成θ的函數(shù)y=f(θ),并求出定義域;
(2)當(dāng)時,如何確定A點的位置才能使得總造價最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省寶雞中學(xué)2010屆高三適應(yīng)性訓(xùn)練(數(shù)學(xué)理) 題型:填空題

 A.(參數(shù)方程與極坐標(biāo))

直線與直線的夾角大小為         

 

B.(不等式選講)要使關(guān)于x的不等式在實數(shù)

范圍內(nèi)有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點,CD過點E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案