在棱長為1的正方體AC1中,E為AB的中點,點P為側(cè)面BB1C1C內(nèi)一動點(含邊界),若動點P始終滿足PE⊥BD1,則動點P的軌跡的長度為(  )
A.B.C.D.
B
如圖,

根據(jù)題意,BD1要始終垂直于PE所在的一個平面,取BC,BB1的中點F,G,易證BD1⊥平面EFG,故點P的軌跡為線段FG,易求得這條線段的長度是.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(13分)(2011•廣東)如圖所示的幾何體是將高為2,底面半徑為1的直圓柱沿過軸的平面切開后,將其中一半沿切面向右水平平移后得到的,A,A′,B,B′分別為的中點,O1,O1′,O2,O2′分別為CD,C′D′,DE,D′E′的中點.

(1)證明:O1′,A′,O2,B四點共面;
(2)設G為A A′中點,延長A′O1′到H′,使得O1′H′=A′O1′.證明:BO2′⊥平面H′B′G

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設l,m,n表示不同的直線,α,β,γ表示不同的平面,給出下列四個命題:
①若m∥l,且m⊥α,則l⊥α;
②若m∥l,且m∥α,則l∥α;
③若α∩β=l,β∩γ=m,γ∩α=n,則l∥m∥n;
④若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,則l∥m.
其中正確命題的個數(shù)是________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點.
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求平面PAB與平面PCD所成的二面角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,三角形ABC是直角三角形,ACB=,PA平面ABC,
此圖形中有____________個直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在三棱錐中,已知,, 一繩子從A點繞三棱錐側(cè)面一圈回到點A的距離中,繩子最短距離是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線l⊥平面α,直線m?平面β,有下面四個命題:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.
其中正確的命題(  )
A.①②B.②④C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點分別是正方體的棱的中點,點分別是線段上的點,則滿足與平面平行的直線有(   )
A.0條B.1條C.2條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設m,n是平面內(nèi)的兩條不同直線,l是平面外的一條直線,則的(     )
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案