【題目】已知四邊形是梯形,如圖,,,的中點,以為折痕把折起,使點到達點的位置(如圖2),且

1)求證:平面平面;

2)求與平面所成角的正弦值.

【答案】1)見解析(2

【解析】

1)連接,取的中點,連接,,作,根據(jù)勾股定理逆定理得到,證明平面,得到答案.

2)以為原點,所在直線為軸,所在直線為軸,所在直線為軸,建立如圖所示的空間直角坐標系,計算平面的一個法向量為,再利用向量夾角公式得到答案.

1)連接,因為,,,的中點,,所以四邊形是邊長為1的正方形,且.

的中點,連接,,,因為,所以,,,

,則.

因為,,所以,故.

因為,所以平面.

因為平面,所以平面平面.

2)由(1)知平面,.為原點,所在直線為軸,所在直線為軸,所在直線為軸,建立如圖所示的空間直角坐標系.

因為,所以,,,,

設平面的一個法向量為,則

,令,則,所以.

因為,設與平面所成的角為,

,

與平面所成角的正弦值為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖甲,E是邊長等于2的正方形的邊CD的中點,以AE、BE為折痕將△ADE與△BCE折起,使D,C重合(仍記為D),如圖乙.

1)探索:折疊形成的幾何體中直線DE的幾何性質(zhì)(寫出一條即可,不含DEDA,DEDB,說明理由)

2)求二面角D-BE-A的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎,劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】體溫是人體健康狀況的直接反應,一般認為成年人腋下溫度T(單位:)平均在之間即為正常體溫,超過即為發(fā)熱.發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險):.某位患者因患肺炎發(fā)熱,于12日至26日住院治療.醫(yī)生根據(jù)病情變化,從14日開始,以3天為一個療程,分別用三種不同的抗生素為該患者進行消炎退熱.住院期間,患者每天上午800服藥,護士每天下午1600為患者測量腋下體溫記錄如下:

抗生素使用情況

沒有使用

使用抗生素A

使用抗生素B治療

日期

12

13

14

15

16

17

18

19

體溫(

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情況

使用抗生素C治療

沒有使用

日期

20

21

22

23

24

25

26

體溫(

38.4

38.0

37.6

37.1

36.8

36.6

36.3

I)請你計算住院期間該患者體溫不低于的各天體溫平均值;

II)在19—23日期間,醫(yī)生會隨機選取3天在測量體溫的同時為該患者進行某一特殊項目a項目的檢查,記X為高熱體溫下做a項目檢查的天數(shù),試求X的分布列與數(shù)學期望;

III)抗生素治療一般在服藥后2-8個小時就能出現(xiàn)血液濃度的高峰,開始殺滅細菌,達到消炎退熱效果.假設三種抗生素治療效果相互獨立,請依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長為,焦距為2,拋物線的準線經(jīng)過C的左焦點F.

1)求CM的方程;

2)直線l經(jīng)過C的上頂點且lM交于P,Q兩點,直線FPFQM分別交于點D(異于點P),E(異于點Q),證明:直線DE的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎,劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當時世界上圓周率計算的最精確數(shù)據(jù).如圖,當分割到圓內(nèi)接正六邊形時,某同學利用計算機隨機模擬法向圓內(nèi)隨機投擲點,計算得出該點落在正六邊形內(nèi)的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,直線過點,傾斜角為

1)求曲線的直角坐標方程與直線l的參數(shù)方程;

2)設直線與曲線交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱中,,,點分別為棱,的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案