P(-1,3)在直線l上的射影為Q(1,-1),則直線l的方程是
x-2y-3=0
x-2y-3=0
分析:根據(jù)題意PQ與直線l互相垂直,算出PQ的斜率kPQ=-2,得出直線l的斜率k=
-1
kPQ
=
1
2
,再由直線方程的點(diǎn)斜式列式,化簡得即得所求l的方程為x-2y-3=0.
解答:解:∵P(-1,3)在直線l上的射影為Q(1,-1),
∴PQ與直線l互相垂直
由PQ的斜率kPQ=
-1-3
1+1
=-2,可得直線l的斜率k=
-1
kPQ
=
1
2

根據(jù)直線方程的點(diǎn)斜式,得l方程為y-(-1)=
1
2
(x-1)
化簡得x-2y-3=0,即為所求
故答案為:x-2y-3=0
點(diǎn)評:本題給出點(diǎn)P在直線l上的射影點(diǎn)Q的坐標(biāo),求直線l的方程.著重考查了直線的基本量與基本形式、直線的位置關(guān)系等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知直線的斜率是-3,點(diǎn)P(1,2)在直線上,則直線方程的一般式是
3x+y-5=0
3x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(-3, 1)
,
OB
=(1, 3)
,在直線y=x+4上是否存在點(diǎn)P,使得
PA
PB
=0
?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的方程為2x-3y-8=0.
(1)當(dāng)直線l1過點(diǎn)A(-1,3),且l1∥l,求直線l1的方程;
(2)若點(diǎn)P(1,m)在直線l上,直線l2被兩坐標(biāo)軸截得的線段的中點(diǎn)恰為點(diǎn)P時(shí),求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(1,3)在直線l:x-2y+1=0的(  )
A、左上方B、左下方C、右上方D、右下方

查看答案和解析>>

同步練習(xí)冊答案