15.已知cos2(α+$\frac{π}{4}$)=$\frac{1}{3}$,則sin2α=( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

分析 由已知利用降冪公式,誘導(dǎo)公式即可化簡(jiǎn)求值得解.

解答 解:∵cos2(α+$\frac{π}{4}$)=$\frac{1+cos(2α+\frac{π}{2})}{2}$=$\frac{1-sin2α}{2}$=$\frac{1}{3}$,
∴sin2α=$\frac{1}{3}$.
故選:B.

點(diǎn)評(píng) 本題主要考查了降冪公式,誘導(dǎo)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=sin(-2x)+cos2x的單調(diào)增區(qū)間為[$-\frac{3π}{8}$+kπ,-$\frac{π}{8}$+kπ](k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知i是虛數(shù)單位,則復(fù)數(shù)$\frac{2+i}{1-2i}$=(  )
A.-iB.$\frac{4}{5}-\frac{3}{5}$iC.iD.$\frac{4}{3}$-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知集合M={x|x2-x-2≤0},N={y|y=2x},則M∩N=( 。
A.(0,2]B.(0,2)C.[0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知f(x)=ax-lnx,x∈(0,e],g(x)=$\frac{lnx}{x}$,其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時(shí),求f(x)的極值,并證明f(x)>g(x)+$\frac{1}{2}$恒成立;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值為3?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.“k>$-\frac{{\sqrt{3}}}{3}$”是“直線y=k(x+1)與圓(x-1)2+y2=1相交”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知等差數(shù)列{an}的首項(xiàng)為a1,公差為d,其前n項(xiàng)和為Sn,若直線y=a1x+m與圓x2+(y-1)2=1的兩個(gè)交點(diǎn)關(guān)于直線x+y-d=0對(duì)稱,則數(shù)列($\frac{1}{{S}_{n}}$)的前100項(xiàng)的和為$\frac{200}{101}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.兩個(gè)函數(shù)的圖象經(jīng)過(guò)平移后能夠重合,稱這兩個(gè)函數(shù)為“同形”函數(shù),則下列四個(gè)函數(shù):f1(x)=2log2(x+2),f2(x)=log2(x+2),f3(x)=log2(x+2)2,f4(x)=log22x,為“同形”函數(shù)的是( 。
A.f1(x)與f3(x)B.f2(x)與f4(x)C.f1(x)與f2(x)D.f3(x)與f4(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,四棱錐P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個(gè)邊長(zhǎng)為2的正三角形,DC=4,O為BD的中點(diǎn),E為PA的一動(dòng)點(diǎn).
(1)求證:PO⊥平面ABCD;
(2)求直線CB與平面PDC所成角的正弦值;
(3)當(dāng)$\overrightarrow{PE}=λ\overrightarrow{PA}$時(shí),二面角E-BD-A的余弦值為$\frac{{\sqrt{5}}}{5}$,求實(shí)數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案