19.函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個單位后關(guān)于y軸對稱,則f(x)在[0,$\frac{π}{2}$]上的單調(diào)遞增區(qū)間為[$\frac{5π}{12}$,$\frac{π}{2}$].

分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對稱性,求得φ的值,再利用余弦函數(shù)的單調(diào)性,求得f(x)在[0,$\frac{π}{2}$]上的單調(diào)遞增區(qū)間.

解答 解:函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個單位后,可得y=sin(2x+$\frac{π}{3}$+φ)的圖象,
根據(jù)所得函數(shù)的圖象關(guān)于y軸對稱,可得$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,∴φ=$\frac{π}{6}$,
則f(x)=cos2x,令2kπ-π≤2x+$\frac{π}{6}$≤2kπ,求得kπ-$\frac{7π}{12}$≤x≤kπ-$\frac{π}{12}$,
可得函數(shù)的增區(qū)間為[得kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$],k∈Z,
故函數(shù)在[0,$\frac{π}{2}$]上的單調(diào)遞增區(qū)間為[$\frac{5π}{12}$,$\frac{π}{2}$],
故答案為:[$\frac{5π}{12}$,$\frac{π}{2}$].

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對稱性以及余弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在四棱柱ABCD-A1B1C1D1中,平面A1ABB1⊥底面ABCD,且∠ABC=$\frac{π}{2}$.
(1)求證:B1C1∥平面BCD1;
(2)求證:平面A1ABB1⊥平面BCD1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2x+1,x≤0}\\{{e}^{x},x>0}\end{array}\right.$,則滿足f(f(m))>f(m)+1的m的取值范圍是( 。
A.$({-\frac{1}{2},+∞})$B.)(0,+∞)C.(-1,+∞)D..$({-\frac{1}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)f(x)=(cosx)•ln|x|的大致圖象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)的圖象如圖,則f(x)的解析式為( 。
A.f(x)=eln|x+1|B.f(x)=eln|x-1|C.f(x)=e|ln(x+1)|D.f(x)=e|ln(x-1)|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cosA=$\frac{3}{5}$,sinB=$\frac{{\sqrt{2}}}{2}$,a=8,則c=7$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知四棱錐S-ABCD的底面為平行四邊形,且SD⊥面ABCD,AB=2AD=2SD,∠DCB=60°,M,N分別為SB,SC中點,過MN作平面MNPQ分別與線段CD,AB相交于點P,Q.
(Ⅰ)在圖中作出平面MNPQ,使面MNPQ‖面SAD(不要求證明);
(Ⅱ)若$\overrightarrow{AQ}=λ\overrightarrow{AB}$,是否存在實數(shù)λ,使二面角M-PQ-B的平面角大小為60°?若存在,求出的λ值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知拋物線y2=2px(p>0)上一 點M(1,y0)到其焦點的距離為5,雙曲線$C:{x^2}-\frac{y^2}{b^2}=1$(b>0)的左頂點為A,若雙曲線C的一條漸近線垂直于直線AM,則其離心率為$\frac{{\sqrt{5}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知平面α⊥平面β,直線m,n均不在平面α、β內(nèi),且m⊥n,則( 。
A.若m⊥β,則n∥βB.若n∥β,則m⊥βC.若m⊥β,則n⊥βD.若n⊥β,則m⊥β

查看答案和解析>>

同步練習冊答案