給出下列對應:

A=N,B={0,1},對應關系是:A中的元素除以2所得的余數(shù)

A={0,12},B={41,0},對應關系是

A={01,2},,對應關系是

其中從集合A到集合B的函數(shù)有(  )個.

[  ]

(A)1
(B)2
(C)3
(D)0
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

16、定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應關系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②有兩個同心圓,A是小圓上所有點形成的集合,B是大圓上所有點形成的集合,則A和B 不具有相同的勢;
③A是B的真子集,則A和B不可能具有相同的勢;
④若A和B具有相同的勢,B和C具有相同的勢,則A和C具有相同的勢
其中真命題為
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
A.函數(shù)f(x)=2x-x2的零點有3個
B.(x+
1
x
+2)5
展開式的常數(shù)項等于32
C.函數(shù)y=sinx(x∈[-π,π])圖象與x軸圍成的圖形的面積是S=
π
sinxdx

D.復數(shù)z1,z2與復平面的兩個向量
OZ1
,
OZ2
相對應,則
OZ1
OZ2
=z1z2

其中真命題的序號是
 
(寫出所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義:對于映射f:A→B,如果A中的不同元素有不同的象,且B中的每一個元素都有原象,則稱f:A→B為一一映射.如果存在對應關系φ,使A到B成為一一映射,則稱A和B具有相同的勢.給出下列命題:
①A={奇數(shù)},B={偶數(shù)},則A和B 具有相同的勢;
②A是直角坐標系平面內所有點形成的集合,B是復數(shù)集,則A和B 不具有相同的勢;
③若A={
a
,
b
},其中
a
,
b
是不共線向量,B={
c
|
c
a
b
共面的任意向量},則A和B不可能具有相同的勢;
④若區(qū)間A=(-1,1),B=(-∞,+∞),則A和B具有相同的勢.
其中真命題為
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:013

給出下列對應:

①A=N,B={0,1},對應關系是:A中的元素除以2所得的余數(shù)

②A={0,1,2},B={4,1,0},對應關系是

③A={0,1,2},,對應關系是

其中從集合A到集合B的函數(shù)有(  )個.

[  ]

(A)1
(B)2
(C)3
(D)0

查看答案和解析>>

同步練習冊答案