20.設(shè)a=($\frac{5}{3}$)${\;}^{\frac{1}{6}}$,b=($\frac{3}{5}$)${\;}^{-\frac{1}{5}}$,c=ln$\frac{2}{3}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.b>a>cC.b>c>aD.a>c>b

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵0<a=($\frac{5}{3}$)${\;}^{\frac{1}{6}}$<b=($\frac{3}{5}$)${\;}^{-\frac{1}{5}}$=$(\frac{5}{3})^{\frac{1}{5}}$,
c=ln$\frac{2}{3}$<ln1=0,
∴b>a>c.
故選:B.

點(diǎn)評 本題考查三個(gè)數(shù)的大小的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對數(shù)函數(shù)和指數(shù)函數(shù)的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知半徑為1的球O內(nèi)切于正四面體A-BCD,線段MN是球O的一條動(dòng)直徑(M,N是直徑的兩端點(diǎn)),點(diǎn)P是正四面體A-BCD的表面上的一個(gè)動(dòng)點(diǎn),則$\overrightarrow{PM}•\overrightarrow{PN}$的取值范圍是[0,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=x2-ax(a>0,且a≠1),g(x)=f′(x)(其中f′(x)為f(x)的導(dǎo)函數(shù)).
(1)當(dāng)a=e時(shí),求g(x)的極大值點(diǎn);
(2)討論f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ax2+bx-c-lnx(x>0)在x=1處取極值,其中a,b為常數(shù).
(1)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在x=1處取極值-1-c,且不等式f(x)≥-2c2恒成立,求實(shí)數(shù)c的取值范圍;
(3)若a>0,且函數(shù)f(x)有兩個(gè)不相等的零點(diǎn)x1,x2,證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在Rt△ABC中,AC⊥BC,過點(diǎn)C的直線VC垂直于平面ABC,D、E分別為線段VA、VC上異于端點(diǎn)的點(diǎn).
(1)當(dāng)DE⊥平面VBC時(shí),判斷直線DE與平面ABC的位置關(guān)系,并說明理由;
(2)當(dāng)D、E、F分別為線段VA、VC、AB上的中點(diǎn),且VC=2BC時(shí),求二面角B-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)P(2,1),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l與x軸不垂直,與橢圓相交于不同于P的兩點(diǎn)A,B,直線PA,PB分別交y軸于M,N,若$\overrightarrow{OM}$=$\overrightarrow{NO}$(其中O為坐標(biāo)原點(diǎn)),直線l是否過定點(diǎn)?若不過定點(diǎn),說明理由,若過定點(diǎn),求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,高為1的等腰梯形ABCD中,AM=CD=$\frac{1}{3}$AB=1,M為AB的三等分點(diǎn),現(xiàn)將△AMD沿MD折起,使平面AMD⊥平面MBCD,連接AB、AC.
(Ⅰ)在AB邊上是否存在點(diǎn)P,使AD∥平面MPC?
(Ⅱ)當(dāng)點(diǎn)P為AB邊中點(diǎn)時(shí),求點(diǎn)B到平面MPC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若直線l過點(diǎn)A(2,3)且點(diǎn)B(-3,2)到直線l的距離最大,則l的方程為5x+y-13=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.經(jīng)過點(diǎn)M(2,2)且在兩軸上截距相等的直線是( 。
A.x+y=4B.x+y=2C.x=2或y=2D.x+y=4或x=y

查看答案和解析>>

同步練習(xí)冊答案