k2,m(m∈N),3,5的平均數(shù)為3,平面上的直線l過(guò)點(diǎn)(0,1),其斜率為等可能取k的值,用X表示坐標(biāo)原點(diǎn)到l距離的平方,則隨機(jī)變量X的數(shù)學(xué)期望E(X)等于( 。
A、
103
270
B、
107
270
C、
111
270
D、
119
270
考點(diǎn):離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計(jì)
分析:由已知得k2可能的取值為0,1,2,3,4,原點(diǎn)到l的距離為d1=1,d2=
2
2
,d3=
3
3
,d4=
1
2
,d5=
5
5
.由此能求出隨機(jī)變量X的數(shù)學(xué)期望E(X).
解答: 解:
.
x
=
k2+m+3+5
4
=3,∴k2+m=4,
又∵m∈N,∴k2可能的取值為0,1,2,3,4,
從而k可能的取值為0,±1,±
2
,±
3
,±2.
當(dāng)k=0時(shí),直線方程為y=1,原點(diǎn)到l的距離d1=1,
當(dāng)k=±1時(shí),直線方程為±x-y+1=0,原點(diǎn)到l的距離d2=
2
2
,
同理,當(dāng)k=±
2
,±
3
,±2時(shí),
原點(diǎn)到l的距離分別為d3=
3
3
,d4=
1
2
,d5=
5
5

由等可能事件的概率可得分布列:
X
1
4
1
5
1
3
1
2
1
P
2
9
2
9
2
9
2
9
1
9
∴E(X)=
1
4
×
2
9
+
1
5
×
2
9
+
1
3
×
2
9
+
1
2
×
2
9
+1×
1
9
=
107
270

故選:B.
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,在歷年高考中都是必考題型之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓O1,圓O2均與x軸相切且圓心O1,O2與原點(diǎn)O共線,O1,O2兩點(diǎn)的橫坐標(biāo)之積為6,設(shè)圓O1與圓O2相交于P,Q兩點(diǎn),直線l:2x-y-8=0,則點(diǎn)P與直線l上任意一點(diǎn)M之間的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線x+y-2=0截圓x2+y2=4所得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將兩個(gè)數(shù)a=8,b=17交換,使a=17,b=8,下面語(yǔ)句正確的一組是( 。
A、a=b b=a
B、b=a a=b
C、c=b b=a a=c
D、a=c c=b b=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某次面試共備有8道題,面試者甲能夠答對(duì)其中的4道題.測(cè)試者每次從8題中隨機(jī)選擇5題發(fā)問(wèn),并規(guī)定至少答對(duì)3題方能通過(guò).
(1)求甲在面試時(shí)答對(duì)的題數(shù)X的分布列;
(2)求甲通過(guò)面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校為了解高三年級(jí)學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個(gè)班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間[2,4]的有8人.

(1)求直方圖中a的值及甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間(10,12]的人數(shù);
(2)從甲、乙兩個(gè)班每天平均學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測(cè)試,設(shè)4人中甲班學(xué)生的人數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax-alnx,試求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若圓C1:(x-m)2+(y+2)2=9與圓C2:(x+1)2+(y-1)2=4外切,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為保護(hù)環(huán)境,綠色出行,某高校今年年初成立自行車(chē)租賃公司,初期投入36萬(wàn)元,建成后每年收入25萬(wàn)元,該公司第n年需要付出的維修費(fèi)用記作an萬(wàn)元,已知{an}為等差數(shù)列,相關(guān)信息如圖所示.
(1)設(shè)該公司前n年總盈利為y萬(wàn)元,試把y表示成n的函數(shù),并求出y的最大值;(總盈利即n年總收入減去成本及總維修費(fèi)用)
(2)該公司經(jīng)過(guò)幾年經(jīng)營(yíng)后,年平均盈利最大,并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案