16.在△ABC中,三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若內(nèi)角A、B、C依次成等差數(shù)列,且不等式-x2+6x-8>0的解集為{x|a<x<c},則S△ABC等于( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

分析 利用等差數(shù)列的性質(zhì)求出B,由不等式-x2+6x-8>0的解集求出a,c,再由正弦定理求出△ABC的面積.

解答 解:△ABC中,內(nèi)角A、B、C依次成等差數(shù)列,
∴B=60°,
∵不等式-x2+6x-8>0的解集為{x|2<x<4},
∴a=2,c=4;
∴△ABC的面積為S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×2×4×sin60°=2$\sqrt{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)與解一元二次不等式以及利用正弦定理的推論求三角形的面積的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=a+$\frac{2}{{2}^{x}-1}$是奇函數(shù),則a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=ax3+1的圖象與直線y=x相切,則a=( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{16}{27}$D.$\frac{4}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$f(x)=\left\{{\begin{array}{l}{{x^2}-4,x>0}\\{0,x=0}\\{1-x,x<0}\end{array}}\right.$.
(1)求f(f(-1)),f(f(1));   
(2)畫出f(x)的圖象;
(3)若f(x)=a,問a為何值時(shí),方程沒有根?有一個(gè)根??jī)蓚(gè)根?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.(文科)已知函數(shù)f(x)=$\left\{\begin{array}{l}-x+2,\;\;\;\;x≥1\\{2^{x-1}},\;\;\;\;\;\;\;x<1\end{array}\right.$,若關(guān)于x的方程f(x)=k有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)角α的終邊經(jīng)過點(diǎn)P(-3a,4a),(a>0),則sinα+2cosα等于(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.-$\frac{2}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)集中A={2,4,6},B={1,9,25,49,81,100},下面的對(duì)應(yīng)關(guān)系f能構(gòu)成A到B的映射的是( 。
A.f:x→(2x-1)2B.f:x→(2x-3)C.f:x→(2x-1)D.f:x→(2x-3)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,在平行四邊形ABCD中,∠ABD=90°,2AB2+BD2=4,若將其沿BD折成直二面角A-BD-C,則三棱錐A-BCD的外接球的表面積為( 。
A.B.C.12πD.16π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}={3^n}+k$
(Ⅰ)求k的值及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成公差為dn的等差數(shù)列,求數(shù)列$\{\frac{1}{d_n}\}$的前n項(xiàng)和Tn,并求使$\frac{8}{5}{T_n}+\frac{n}{{5×{3^{n-1}}}}≤\frac{40}{27}$成立的正整數(shù)n的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案