如圖所示的幾何體中,四邊形ABCD是正方形,MA⊥平面ABCD,PDMA,E、G、F分別為MB、PB、PC的中點(diǎn),且AD=PD=2MA.
(Ⅰ)求證:平面EFG⊥平面PDC;
(Ⅱ)求三棱錐P-MAB與四棱錐P-ABCD的體積之比.
(I)證明:由已知MA⊥平面ABCD,PDMA,
所以PD⊥平面ABCD
又BC∈平面ABCD,
因?yàn)樗倪呅蜛BCD為正方形,
所以PD⊥BC
又PD∩DC=D,
因此BC⊥平面PDC
在△PBC中,因?yàn)镚、F分別是PB、PC中點(diǎn),
所以GFBC
因此GF⊥平面PDC
又GF∈平面EFG,
所以平面EFG⊥平面PDC;
(Ⅱ)因?yàn)镻D⊥平面ABCD,
四邊形ABCD為正方形,不妨設(shè)MA=1,
則PD=AD=2,所以Vp-ABCD=
1
3
S正方形ABCD,PD=
8
3

由于DA⊥面MAB的距離
所以DA即為點(diǎn)P到平面MAB的距離,
三棱錐Vp-MAB=
1
3
×
1
2
×1×2×2=
2
3

所以VP-MAB:VP-ABCD=1:4.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,函數(shù)f(x)=x+的定義域?yàn)?0,+∞).設(shè)點(diǎn)P是函數(shù)圖象上任一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M,N.

(1)證明:|PM|·|PN|為定值;
(2)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在長方體ABCD-A1B1C1D1中,底面ABCD是正方形,E是DD1的中點(diǎn).
(1)求證:AC⊥B1D;
(2)若B1D⊥平面ACE,求
AA1
AB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知三棱錐P-ABC的側(cè)面PAB是等邊三角形,D是AB的中點(diǎn),PC=BC=AC=2,PB=2
2

(1)證明:AB⊥平面PCD;
(2)求點(diǎn)C到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知M是正四面體ABCD棱AB的中點(diǎn),N是棱CD的中點(diǎn),則下列結(jié)論中,正確的個(gè)數(shù)有( 。
(1)MN⊥AB;
(2)VA-MCD=VB-MCD
(3)平面CDM⊥平面ABN;
(4)CM與AN是相交直線.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平行六面體ABC-A1B1C1的底面為正方形,O1,O分別為上、下底面中心,且A1在底面ABCD上的射影為O.
(1)求證:平面O1DC⊥平面ABCD;
(2)若點(diǎn)E、F分別在棱AA1、BC上,且AE=2EA1,問F在何處時(shí),EF⊥AD?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,AB=
3
,E、F
分別為AC、AD的中點(diǎn).
(1)求證:平面BEF⊥平面ABC;
(2)求直線AD與平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,DC⊥平面ABC,EADC,AB=AC=AE=
1
2
DC,M為BD的中點(diǎn).
(Ⅰ)求證:EM平面ABC;
(Ⅱ)求證:平面AEM⊥平面BDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在三棱錐A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
2
,動(dòng)點(diǎn)D在線段AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當(dāng)點(diǎn)D運(yùn)動(dòng)到線段AB的中點(diǎn)時(shí),求二面角D-CO-B的大;
(Ⅲ)當(dāng)CD與平面AOB所成角最大時(shí),求三棱錐C-OBD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案