某化工廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示).如果池四周圍墻建造單價為400元/米,中間兩道隔墻建造單價為248元/米,池底建造單價為80元/米2,水池所有墻的厚度忽略不計,試設計污水處理池的長和寬,使總造價最低,并求出最低總造價。
【解析】本試題主要考查導數(shù)在研究函數(shù)中的運用。首先設變量
設寬為則長為,依題意,總造價
當且僅當即取等號
(元)得到結論。
設寬為則長為,依題意,總造價
………6分
當且僅當即取等號
(元)……………………10分
故當處理池寬為10米,長為16.2米時能使總造價最低,且最低總造價為38880元
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com