已知中,分別是角所對的邊
(1)用文字敘述并證明余弦定理;
(2)若
(1)三角形中任何一邊的平方等于其它兩邊的平方的和減去這兩邊與它們的夾角的余弦的積的兩倍
(2)結合三角形中的余弦定理可知第三邊的值。

試題分析:解:(1)三角形中任何一邊的平方等于其它兩邊的平方的和減去這兩邊與它們的夾角的余弦的積的兩倍;
證明:在三角形ABC中,設是角A,B,C所對的邊,由,兩邊平方得:
,即:
(2)由余弦定理得:,整理得:,解得

點評:本試題主要是考查了余弦定理的運用,以及向量的數(shù)量積的公式的運用,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知向量,且,,則一定共線的三點是(     )
A.A、CDB.A、BDC.A、B、CD.BC、D

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知兩個不相等的平面向量()滿足||=2,且的夾角為120°,則||的最大值是

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若向量不共線,,且,則的夾角為____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設單位向量、夾角是,,若、夾角為銳角,則t的取值范圍是(   )
A.t> -1 且t≠1B.t> -1C.t<1 且t≠ -1D.t<1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a,b是平面內(nèi)兩個互相垂直的單位向量,若向量c滿足(a-c)·(b一c)=0,則|c|的最大值是
A.1 B.C.2D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設向量滿足:的夾角為,則的夾角是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

k為實數(shù),已知向量=(1,2),=(-3,2),且(k)⊥( -3),則k的值是     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

中,為中線上的一個動點,若,則的最小值為         .

查看答案和解析>>

同步練習冊答案