11.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}+ax,x>0\\{2^x}-1,x≤0\end{array}\right.$有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,0)B.(0,1]C.(0,+∞)D.[0,+∞)

分析 求出函數(shù)在x≤0時(shí)的零點(diǎn),然后判斷x>0時(shí)的零點(diǎn)即可.

解答 解:當(dāng)x≤0時(shí),y=2x-1=0可得x=0,滿足題意,
當(dāng)x>0時(shí),-x2+ax=0,可得x=0(舍去)或x=a,
函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}+ax,x>0\\{2^x}-1,x≤0\end{array}\right.$有兩個(gè)零點(diǎn),
可得a>0.
故選:C.

點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì),函數(shù)的零點(diǎn)法判斷,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.甲、乙兩所學(xué)校高三年級(jí)分別有600人,500人,為了了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績(jī)情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績(jī),并作出了頻數(shù)分布統(tǒng)計(jì)表如表:
甲校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)34714
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)17x42
乙校:
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)1289
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)1010y4
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績(jī)?cè)赱120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績(jī)有差異?
甲校乙校總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知i為虛數(shù)單位,a∈R,若$\frac{1-i}{a+i}$為純虛數(shù),則復(fù)數(shù)z=(2a+1)+$\sqrt{2}$i的模等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{6}$D.$\sqrt{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=x+$\frac{9}{x+1}$(0≤x≤3),則f(x)的值域?yàn)閇5,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,AC⊥面BCD,BD⊥面ACD,若AC=CD=1,∠ABC=30°,求二面角C-AB-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)滿足$f(x)+1=\frac{1}{f(x+1)}$,當(dāng)x∈[0,1]時(shí),f(x)=x,若在區(qū)間(-1,1]上,g(x)=f(x)-mx-2m有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$0<m≤\frac{1}{3}$B.$0<m<\frac{1}{2}$C.$\frac{1}{2}<m≤1$D.$\frac{1}{3}<m<1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)=|x-1|+|x-2|.
(1)求函數(shù)g(x)=lg(f(x)-2)的定義域;
(2)若f(x)的最小值為m,a,b,c∈R,a+b+c=m,證明:a2+b2+c2≥$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,等腰直角三角形ACB中,∠ACB=90°,圓心O為AB的中點(diǎn),AC切圓O于點(diǎn)D.
(I)證明:BC為圓O的切線;
(Ⅱ)連接BD,作CH⊥DB,H為垂足,作HF⊥BC,F(xiàn)為垂足,求$\frac{BF}{DH}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若(sinθ+cosθ)2=2x+2-x,θ∈(0,$\frac{π}{2}$),則$\frac{1}{sinθ}$=( 。
A.1B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案