【題目】已知集合{(x,y)|x∈[0,2],y∈[﹣1,1]}
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
【答案】
(1)解:設(shè)事件“x,y∈Z,x+y≥0”為A,x,y∈Z,x∈[0,2],y∈[﹣1,1]}
即x=0,1,2,﹣1.0.1則基本事件總和n=9,其中滿足“x+y≥0”的基本事件m=8,
P(A)=
故所求的f的概率為 .
(2)解:設(shè)事件“x,y∈R,x+y≥0”為B,
x∈[0,2],y∈[﹣1,1]
基本事件如圖四邊形ABCD區(qū)域
S=4,事件B包括的區(qū)域如陰影部分
S′=S﹣ =
∴P(B)=
故所求的概率為 .
【解析】(1)因為x,y∈Z,且x∈[0,2],y∈[﹣1,1],基本事件是有限的,所以為古典概型,這樣求得總的基本事件的個數(shù),再求得滿足x,y∈Z,x+y≥0的基本事件的個數(shù),然后求比值即為所求的概率.(2)因為x,y∈R,且圍成面積,則為幾何概型中的面積類型,先求x,y∈Z,求x+y≥0表示的區(qū)域的面積,然后求比值即為所求的概率.
【考點精析】本題主要考查了幾何概型的相關(guān)知識點,需要掌握幾何概型的特點:1)試驗中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個;2)每個基本事件出現(xiàn)的可能性相等才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R). (Ⅰ) 若a=1,求直線y=x被圓C所截得的弦長;
(Ⅱ) 若a>1,如圖,圓C與x軸相交于兩點M,N(點M在點N的左側(cè)).過點M的動直線l與圓O:x2+y2=4相交于A,B兩點.問:是否存在實數(shù)a,使得對任意的直線l均有∠ANM=∠BNM?若存在,求出實數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=| ﹣ax|,若對任意的正實數(shù)a,總存在x0∈[1,4],使得f(x0)≥m,則實數(shù)m的取值范圍為( )
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ,x∈[2,6].
(1)證明f(x)是減函數(shù);
(2)若函數(shù)g(x)=f(x)+sinα的最大值為0,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=log2(2x+1)的圖象,只需將y=1+log2x的圖象( )
A.向左移動 個單位
B.向右移動 個單位
C.向左移動1個單位
D.向右移動1個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】P為橢圓 + =1上一點,F(xiàn)1 , F2為左右焦點,若∠F1PF2=60°.
(1)求△F1PF2的面積;
(2)求P點的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=2,a2=6,且數(shù)列{an﹣1﹣an}{n∈N*}是公差為2的等差數(shù)列.
(1)求{an}的通項公式;
(2)記數(shù)列{ }的前n項和為Sn , 求滿足不等式Sn> 的n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,AB=2,點E是BC的中點.
(1)求線段DE的長;
(2)求直線A1E與平面ADD1A1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a∈R,當x>0時,f(x)=log2( +a).
(1)若函數(shù)f(x)過點(1,1),求此時函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+2log2x只有一個零點,求實數(shù)a的范圍;
(3)設(shè)a>0,若對任意實數(shù)t∈[ ,1],函數(shù)f(x)在[t,t+1]上的最大值與最小值的差不大于1,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com