與直線l:x+y-2=0和曲線x2+y2-12x-12y+54=0都相切的半徑最小的圓的標(biāo)準(zhǔn)方程是    .
(x-2)2+(y-2)2=2
【思路點(diǎn)撥】數(shù)形結(jié)合得最小圓的圓心一定在過x2+y2-12x-12y+54=0的圓心與直線x+y-2=0垂直的垂線段上.
解:∵圓A:(x-6)2+(y-6) 2=18,

∴A(6,6),半徑r1=3,且OA⊥l,A到l的距離為5,顯然所求圓B的直徑2r2=2,即r2=,又OB=OA-r1-r2=2,由與x軸正半軸成45°角,∴B(2,2),∴方程為(x-2)2+(y-2)2=2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知以點(diǎn)C(t∈R,t≠0)為圓心的圓與x軸交于點(diǎn)O、A,與y軸交于點(diǎn)O、B,其中O為原點(diǎn).
(1)求證:△AOB的面積為定值;
(2)設(shè)直線2x+y-4=0與圓C交于點(diǎn)M、N,若|OM|=|ON|,求圓C的方程;
(3)在(2)的條件下,設(shè)P、Q分別是直線l:x+y+2=0和圓C的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓經(jīng)過坐標(biāo)原點(diǎn)和點(diǎn),且圓心在軸上.
(1)求圓的方程;
(2)設(shè)直線經(jīng)過點(diǎn),且與圓相交所得弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知圓與圓外切于點(diǎn),直線是兩圓的外公切線,分別與兩圓相切于兩點(diǎn),是圓的直徑,過作圓的切線,切點(diǎn)為.

(Ⅰ)求證:三點(diǎn)共線;
(Ⅱ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的圓心坐標(biāo)是(  )
A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

點(diǎn)(1,1)在圓(x-a)2+(y+a)2=4內(nèi),則實(shí)數(shù)a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓Cx2y2-6x+8=0,則圓心C的坐標(biāo)為________;若直線ykx與圓C相切,且切點(diǎn)在第四象限,則k=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)圓C同時(shí)滿足三個(gè)條件:①過原點(diǎn);②圓心在直線y=x
上;③截y軸所得的弦長(zhǎng)為4,則圓C的方程是    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若原點(diǎn)在圓(x-m)2+(y+m)2=8的內(nèi)部,則實(shí)數(shù)m的取值范圍是(  )
A.-2<m<2B.0<m<2
C.-2<m<2D.0<m<2

查看答案和解析>>

同步練習(xí)冊(cè)答案