等差數(shù)列的前項(xiàng)和為,已知.
(1)求通項(xiàng)公式;
(2)若.

(1)(2)

解析試題分析:本題第(1)問,只要由求出首項(xiàng)和公差即可;
第(2)問,應(yīng)用第(1)題中等差數(shù)列的通項(xiàng)公式,得到前n項(xiàng)和公式,接著令,就可求出n.。
解:(1),∴,
;
(2)
,得
考點(diǎn):等差數(shù)列的前n項(xiàng)和;等差數(shù)列的通項(xiàng)公式.
點(diǎn)評(píng):本題考查等差數(shù)列的定義,通項(xiàng)公式,前n項(xiàng)和公式的應(yīng)用,求出首項(xiàng)a1和公差d的值,是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,,且,.
(Ⅰ)求
(Ⅱ)若,求的值和的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是數(shù)列的前項(xiàng)和,,,.
(1)求證:數(shù)列是等差數(shù)列,并的通項(xiàng);
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的前n項(xiàng)和為 Sn
(I)若a1=1,S10= 100,求{an}的通項(xiàng)公式;
(II)若Sn=n2-6n,解關(guān)于n的不等式Sn+an>2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

下面四個(gè)圖案,都是由小正三角形構(gòu)成,設(shè)第n個(gè)圖形中所有小正三角形邊上黑點(diǎn)的總數(shù)為.
          
圖1            圖2                圖3                        圖4
(1)求出,,,;
(2)找出的關(guān)系,并求出的表達(dá)式;
(3)求證:().

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知等差數(shù)列{an}的公差d > 0,且是方程x2-14x+45=0的兩根,求數(shù)列通項(xiàng)公式(2)設(shè),數(shù)列{bn}的前n項(xiàng)和為Sn,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{}中,=14,前10項(xiàng)和. (1)求
(2)將{}中的第2項(xiàng),第4項(xiàng),…,第項(xiàng)按原來的順序排成一個(gè)新數(shù)列{},令,求數(shù)列{}的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)積為,且 .
(Ⅰ)求證數(shù)列是等差數(shù)列;
(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列中,成等比數(shù)列,
(1)求數(shù)列的通項(xiàng)公式; (2)求前20項(xiàng)的和

查看答案和解析>>

同步練習(xí)冊(cè)答案